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Exercise 1.1 Significance vs. importance
Problem

In the lecture we proposed the following four main questions1 to be answered by the statistical analysis of a
dataset:

1. Is there an effect?

2. Where is the effect?

3. What is the effect?

4. Can the conclusions be trusted?

The founder of modern statistics R. A. Fisher once wrote:

“It is the magnitude of treatment differences that is of primary importance, not their statistical
significance”

Which of the four questions listed above are concerned with significance and with magnitude respectively?
Do you agree with Fisher?

Solution

Questions 1 is clearly concerned with significance and the same can be said to an extent about Question 2.
Question 3 concerns magnitude while Question 4 is again about significance.

One could argue that large treatment differences that are insignificant are also not of primary importance. It
seems that one needs to care about magnitude and significance simultaneously.

Exercise 1.2 Datasets, variables and observations
Problem

Often data is organized in tables in a laboratory diary or in an Excel sheet. Below you see four examples
from the biosciences. For each of the following four examples, discuss these questions, and summarize your
conclusions in a Table-of-Variables:

(a) How many observations have been made?

(b) What are the variables in the experiment?

(c) What are the variable types (nominal, ordinal, interval, ratio)?

(d) What do you think is the relevant question to be answered by the statistical analysis?
1In some situations the word “effect” should be replaced by “association” in these questions.
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(e) Which variable would you use as the response?

Data example 1: In an experiment concerning the effect of antibiotic and vitamin additives on growth 12
rats were given two different levels of antibiotics and two different levels of vitamins in their diet, and their
growth was measured over some time period. The following table shows the measurements for all 12 rats.

Level of vitamin
Level of antibiotic 0 5

0 1.30 1.19 1.08 1.26 1.21 1.19
40 1.05 1.00 1.05 1.52 1.56 1.55

Hint: There are three variables in this example.

Data example 2: An experiment made by Anders Juel Møller (KVL) compared two chilling methods
(tunnel-chilling and fast-chilling) of pork. 24 pigs were sampled from two pH groups (high and low pH). After
slaughtering the 24 pigs were divided into two halves. One half was tunnel-chilled, the other fast-chilled.
After some time the tenderness of the 48 pieces of meat was measured. The measurements are displayed in
the following table.

Pig pH Tunnel Fast
1 low 7.22 5.56
2 low 3.11 3.33
3 low 7.44 7.00
4 low 4.33 4.89
5 low 6.78 6.56
6 low 5.56 5.67
7 low 7.33 6.33
8 low 4.22 5.67
9 low 3.89 4.00
10 low 5.78 5.56
11 low 6.44 5.67
12 low 8.00 5.33
13 high 8.44 8.44
14 high 7.11 6.00
15 high 6.00 5.78
16 high 7.56 7.67
17 high 5.11 4.56
18 high 8.67 8.00
19 high 5.78 7.67
20 high 6.11 5.67
21 high 7.44 7.56
22 high 7.67 6.11
23 high 8.00 8.22
24 high 8.78 8.44

Data example 3: 20 people participated in an experiment comparing the difference between two different
diets. By randomization 10 people were assigned to each diet and every week a weight gain or weight loss
was observed. The observations are the number of weeks where the diet resulted in a weight loss for each of
the 20 people in the experiment. The table below displays the results for a period of eight weeks showing the
number of people for each combination of diet and weeks with weight loss.

Weeks with weight loss
0 1 2 3 4 5 6 7 8

Diet 1 1 0 2 0 1 1 2 0 3
Diet 2 2 1 0 1 2 1 2 1 0

Hint: The observations are perhaps not what they seem at first sight. How many observations are there here?
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Data example 4: In an experiment concerning the influence of stress on metabolism in rats the regulation
of 96 genes were measured using the qPCR method. A total of 47 rats were allocated to 8 groups as shown in
the following table.

Group 1 2 3 4 5 6 7 8
Number of rats 6 5 6 6 6 6 6 6
Sex male male male male female female female female
Stabling single single group group single single group group
Food additive no yes no yes no yes no yes

In each group the average gene regulation was measured on a logarithmic scale. The following table shows
the measurements for 8 genes.

Group
Gene 1 2 3 4 5 6 7 8
Abcb1b 5.554 4.49 4.85 5.076 7.416 6.684 7.524 6.894
Abcb1 5.334 5.55 5.53 4.656 3.456 3.134 3.894 3.004
Abcb4 1.134 1.19 1.51 1.406 1.916 1.454 2.054 1.684
Abcc1 8.114 8.01 8.86 8.466 8.316 7.104 7.884 6.644
Abp1 8.224 8.68 9.24 8.676 11.406 8.504 10.604 8.214
Adh1 −2.996 −3.38 −2.92 −3.214 −3.964 −4.216 −3.766 −4.416
Adh4 2.944 3.10 3.24 3.786 2.456 2.474 2.154 2.494
Ahr 3.624 3.62 4.56 4.976 3.136 3.334 3.014 3.294

The experiment was conducted by Tina Vicky Alstrup Hansen (UCPH-LIFE).

Solution

1. We have N = 12 and have the following table of variables:
Variable Type Range Usage
antibiotic Nominal 0, 40 fixed effect
vitamin Nominal 0, 5 fixed effect
growth Continuous [1.00 ; 1.56] response

The most important question of this dataset is how the level of vitamin and/or antibiotic changes the
growth of the rats.

2. There are two possible options here. If we consider modelling the difference between the two methods,
we have N = 24 and the following table:

Variable Type Range Usage
pH.group Nominal low, high fixed effect
Tunnel Continuous [3.11 ; 8.78] response
Fast Continuous [3.33 ; 8.44] response

Alternatively, we can include the method as a predictor but then correct for the pig using a random
effect (we will discuss this in detail later in the course). In this case, we have N = 48 and the following
table:

Variable Type Range Usage
Pig Nominal 24 levels random effect
pH.group Nominal low, high fixed effect
method Nominal tunnel, fast fixed effect
tenderness Continuous [3.11 ; 8.44] response

The primary scientific question is to determine which of the two chilling methods produce the most
tender meat and perhaps how this is affected by the pH of the pig.

3. We again have two possible tables here. If we consider the weight loss as a binary response variable,
then we have N = 160 observations for different combinations of person, diet and week. We have the
following table:
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Variable Type Range Usage
diet Nominal 2 levels fixed effect
week Ordinal 1 < . . .< 8 fixed effect
person Nominal 20 levels random effect
weight.loss Binary no, yes response

Alternatively, we can model the N = 20 counts with just the diet as a fixed effect. This results in the
table below:

Variable Type Range Usage
diet Nominal 2 levels fixed effect
weeks.with.weight.loss Count 0 < . . .< 8 response

The primary scientific question is to determine which of the diets are most effective at weight loss.

4. We have observations of 8 groups for 96 genes resulting in N = 8 · 96 = 768. We then have the following
table:

Variable Type Range Usage
number.of.rats Continuous 5,6 weight
group Nominal 8 levels random effect
sex Nominal male, female fixed effect
stabling Nominal no, yes fixed effect
food.additive Nominal no, yes fixed effect
gene Nominal 96 levels fixed effect
expression Continuous [–5.7060 ; 13.2240] response

Note that the variable number.of.rats is used as weight to correct for the fact that we can be more
certain of the average gene regulation for groups with 6 rats than groups of 5. The primary scientific
question is whether the gene expression is affected by stabling or food additive perhaps with the
possibility that this is different across sexes or genes.

Exercise 1.5 Hypertension in diabetic patients
Problem

Before commencing on the statistical methods we introduce yet another R technicality. So far we have seen
data encoded in text-files, Excel sheets, and R scripts. But of course R also has a format for saving data,
namely in RData-files2. If RStudio is open, then you may read RData files using the “open file’ ’ icon in the
Environment window, or by using the load() function from the Console. If RStudio is not open, then you
may open RStudio together with the RData file by double clicking on the file (in Windows).

The data for this exercise is available in the file hypertension.RData, and also in an Excel sheet (just in
case you need it, which you should not).

An experiment on 19 diabetic patients was conducted in order to compare the effects of two drugs called
Drug E and Drug N on the treatment of high blood pressure. The experiment is a cross-over study. This
means that all patients try both drugs in two different study periods. Both study periods lasted for 14 days.
In between the two study periods was a wash-out period, which also lasted for 14 days. The patients were
randomly assigned to two groups called E/N and N/E. The patients in the E/N-group received drug E in the
first study period and drug N in the second study period. The patients in the N/E-group received drug N in
the first study period and drug E in the second study period.

The systolic and the diastolic blood pressure was measured for all the patients at the beginning and the end
of both study periods. In this exercise we will only analyse the observations of the systolic blood pressure.
These observations are shown in the table on the next page. %The observations for the diastolic blood
pressure may be found on the internet (search on the reference given at the end of this exercise).

2We have already worked with RData-files in Exercise 1.3.
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Systolic blood pressure
Patient id Treatment order Baseline 1 End 1 Baseline 2 End 2

9 Drug E, Drug N 124 136 120 145
21 Drug E, Drug N 120 132 138 126
8 Drug E, Drug N 115 96 111 91
12 Drug E, Drug N 134 118 123 123
16 Drug E, Drug N 131 106 111 123
19 Drug E, Drug N 119 108 113 112
20 Drug E, Drug N 124 112 108 112
24 Drug E, Drug N 127 113 121 143
13 Drug N, Drug E 113 113 107 97
17 Drug N, Drug E 132 109 122 119
18 Drug N, Drug E 129 133 139 130
23 Drug N, Drug E 124 120 127 118
25 Drug N, Drug E 112 103 112 121
10 Drug N, Drug E 124 112 128 122
11 Drug N, Drug E 144 154 156 137
14 Drug N, Drug E 134 118 122 109
15 Drug N, Drug E 119 118 115 114
22 Drug N, Drug E 123 123 114 108
26 Drug N, Drug E 122 123 124 120

The R dataset hypertension.RData contains the dataset. Beside the raw observations encoded in the variables
patient, order, baseline1, end1, baseline2 and end2 five new variables called change1, change2, average,
diff and E_diff_N have been defined.

• The variable change1 contains the change of blood pressure over study period 1.

• The variable change2 contains the change of blood pressure over study period 2.

• The variable average contains the average change of the blood pressure over both study periods.

• The variable diff contains the difference of the changes of blood pressure between study period 1 and
study period 2.

• The variable E_diff_N contains the difference of the changes of the blood pressure between the study
periods given drug E and drug N.

To analyze the dataset for the cross-over study the following four t-tests may be performed:

• Two sample t-test comparing E_diff_N in the E/N-group against the N/E-group.

• Two sample t-test comparing average in the E/N-group against the N/E-group.

• Two sample t-test comparing diff in the E/N-group against the N/E-group.

• One sample t-test comparing E_diff_N against the mean value 0.

Two of these t-tests do the actual comparison between the effects of drug E and drug N. These tests, however,
are only valid when the following two problems do not occur:

(i) A spill-over (also called a carry-over) from study period 1 to study period 2. A possible explanation for
such an effect is that the drug given in study period 1 still has an effect in study period 2.

(ii) An interaction between the effects of the drugs and the study periods. For instance that the effect of
drug E for some strange reason is larger in study period 1 than in study period 2.

The two remaining t-tests are done to validate that these two problems have not occurred.

(a) Which of the four t-tests listed above do the drug comparison, and which t-tests validates against
problem 1 and 2?

Help to get started: If the drugs have different effects and if there is a spill-over from period 1 to period
2, then the difference between the changes in the E- and the N-period will depend on the order the
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drugs were given.

(b) Perform the relevant t-tests. Remember to validate the underlying normality assumption before you
make the t-tests. What is the conclusion from these tests?

Remark: Using all these t-tests for the statistical analysis would be uncommon. Instead, the analysis is
usually done using a random effect model. We will return to this on course day 5.

Reference: Bradstreet, T.E. (1994) “Favorite Data Sets from Early Phases of Drug Research - Part 3.’ ’
Proceedings of the Section on Statistical Education of the American Statistical Association.

Solution

Usually a cross-over experiment would be analyzed using a random effects model (Day 5 of the course).
However, it is also possible to analyze this dataset using t-tests. In the exercise text 4 t-tests are proposed.

First we read the data (available in an R dataset) and quickly summarize it:

load("hypertension.RData")
summary(hypertension)

## patient order baseline1 end1 baseline2
## Min. : 8.0 E/N: 8 Min. :112.0 Min. : 96.0 Min. :107.0
## 1st Qu.:12.5 N/E:11 1st Qu.:119.5 1st Qu.:110.5 1st Qu.:112.5
## Median :17.0 Median :124.0 Median :118.0 Median :121.0
## Mean :17.0 Mean :124.7 Mean :118.3 Mean :121.6
## 3rd Qu.:21.5 3rd Qu.:130.0 3rd Qu.:123.0 3rd Qu.:125.5
## Max. :26.0 Max. :144.0 Max. :154.0 Max. :156.0
## end2 change1 change2 average
## Min. : 91.0 Min. :-25.000 Min. :-20.000 Min. :-19.500
## 1st Qu.:112.0 1st Qu.:-15.000 1st Qu.: -9.500 1st Qu.: -7.250
## Median :120.0 Median : -9.000 Median : -4.000 Median : -4.500
## Mean :119.5 Mean : -6.474 Mean : -2.158 Mean : -4.316
## 3rd Qu.:124.5 3rd Qu.: 0.500 3rd Qu.: 2.000 3rd Qu.: -1.250
## Max. :145.0 Max. : 12.000 Max. : 25.000 Max. : 18.500
## diff E_diff_N
## Min. :-37.000 Min. :-37.000
## 1st Qu.:-16.000 1st Qu.:-14.500
## Median : -3.000 Median : -6.000
## Mean : -4.316 Mean : -6.526
## 3rd Qu.: 5.500 3rd Qu.: 2.000
## Max. : 29.000 Max. : 24.000

The t-test comparing E_diff_N in the two groups will test Problem (i), that is, it investigates whether there
is a spill-over effect. If the drugs have different effects and if there is a spill-over from period 1 to period 2,
then the differences between the groups will depend on the order of the groups. Therefore, when there is no
spill-over, we would expect the order to be constant, which we test with the t-test. To investigate whether it
is reasonable to perform the t-test, we do a normal QQ-plot for both orders:

library(ggplot2)
ggplot(hypertension, aes(sample = E_diff_N)) +

stat_qq() + scale_y_continuous(name = "E_diff_N") +
scale_x_continuous("Normal quantiles") +
facet_grid(. ~ order, labeller = as_labeller(c(

"E/N" = "order = E/N",
"N/E" = "order = N/E"

)))
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In both plots, it looks like the points are roughly on a line so the normality assumption is okay-ish. We now
perform a Welch t-test (which does not assume equal variances):

t.test(E_diff_N ~ order, data = hypertension)

##
## Welch Two Sample t-test
##
## data: E_diff_N by order
## t = -1.3533, df = 11.911, p-value = 0.2011
## alternative hypothesis: true difference in means between group E/N and group N/E is not equal to 0
## 95 percent confidence interval:
## -28.63542 6.70360
## sample estimates:
## mean in group E/N mean in group N/E
## -12.875000 -1.909091

The test is non-significant (p = 0.2011) so we cannot reject the null hypothesis of no spill-over.

which yields a p-value of 0.1067. The test remains non-significant.

The t-test comparing average in the two gorups will test Problem (ii), that is, it investigates whether there
is an interaction between study period and drug type. If the drugs have different effects for different study
periods, then the average response will depend on the order. There there is no interaction, we would expect
the average to be the same for both orders, which test with the t-test. We can again check normality:

ggplot(hypertension, aes(sample = average)) +
stat_qq() + scale_y_continuous(name = "average") +
scale_x_continuous("Normal quantiles") +
facet_grid(. ~ order, labeller = as_labeller(c(

"E/N" = "order = E/N",
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"N/E" = "order = N/E"
)))
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The normality assumption is perhaps not entirely reasonable here. We still perform a Welch t-test (which
does not assume equal variances):

t.test(average ~ order, data = hypertension)

##
## Welch Two Sample t-test
##
## data: average by order
## t = 0.68005, df = 8.9977, p-value = 0.5136
## alternative hypothesis: true difference in means between group E/N and group N/E is not equal to 0
## 95 percent confidence interval:
## -6.543544 12.168544
## sample estimates:
## mean in group E/N mean in group N/E
## -2.6875 -5.5000

The test is non-significant (p = 0.5136) so we cannot reject the null hypothesis of no interaction. We therefore
accept this hypothesis.

Finally, we can test the difference between the effects of the two drugs with either of the remaining t-tests.
We can check the difference between the study periods for each of the two orders. If this difference depends
on the order, then there is a difference between using drugs E and N. We first check normality:

ggplot(hypertension, aes(sample = diff)) +
stat_qq() + scale_y_continuous(name = "diff") +
scale_x_continuous("Normal quantiles") +
facet_grid(. ~ order, labeller = as_labeller(c(
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"E/N" = "order = E/N",
"N/E" = "order = N/E"

)))
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Again the normality assumption is perhaps not entirely reasonable here. We perform a t-test:

t.test(diff ~ order, data = hypertension)

##
## Welch Two Sample t-test
##
## data: diff by order
## t = -1.8245, df = 11.911, p-value = 0.09324
## alternative hypothesis: true difference in means between group E/N and group N/E is not equal to 0
## 95 percent confidence interval:
## -32.453600 2.885418
## sample estimates:
## mean in group E/N mean in group N/E
## -12.875000 1.909091

wilcox.test(diff ~ order, data = hypertension)

## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot
## compute exact p-value with ties

##
## Wilcoxon rank sum test with continuity correction
##
## data: diff by order
## W = 23, p-value = 0.09022
## alternative hypothesis: true location shift is not equal to 0
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The test is non-significant (p = 0.09324) so we cannot reject the null hypothesis of no effect using this test.
Alternatively, we could have done the one-sample t-test. We check normality:

ggplot(hypertension, aes(sample = E_diff_N)) +
stat_qq() + scale_y_continuous(name = "E_diff_N") +
scale_x_continuous("Normal quantiles")
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It looks like the points are roughly on a line so the normality assumption is reasonable. We now perform a
one-sample t-test:

t.test(E_diff_N ~ 1, data = hypertension)

##
## One Sample t-test
##
## data: E_diff_N
## t = -1.6771, df = 18, p-value = 0.1108
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -14.70171 1.64908
## sample estimates:
## mean of x
## -6.526316

The test is non-significant (p = 0.1108) so we cannot reject the null hypothesis of no effect using this test
either. Note that the p-values differ in the two tests but the conclusions are roughly similar.
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