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Exercise 2.1 Wilcoxon and t-tests: Syntax possibilities
Problem

In this exercise we will work with data example 2 used on course Day~1 in Exercise 1.2 and Exercise 1.4.
Recall that this example was concerned with tenderness of pork from two pH-groups (high and low pH) after
two chilling methods (tunnel and fast chilling). In the organization (tidy data on wide format) of the dataset
in the text file dataExample2.txt there are four variables:

Pig, pH.group, Tunnel, Fast

The objective of this exercise is to pay attention to the various syntaxes that may be used in the basic test
functions like t.test() and wilcox.test(). First we will do this “theoretically’ ’, i.e. without opening R or
RStudio. Instead, you should simply imagine that the dataset is available in a data frame called example2
containing the four variables listed above. Now suppose that for the pigs that have been tunnel-chilled you
want to compare the tenderness in the low pH-group against the tenderness in the high pH-group. Which of
the following 7 calls do this? Explain your reasoning for each line of code.

t.test(example2$Tunnel, example2$Fast, paired = TRUE)
with(example2, wilcox.test(Tunnel, Fast, paired = TRUE))
with(example2, wilcox.test(Tunnel ~ pH))
t.test(Tunnel ~ pH, data = example2, var.equal = TRUE)
t.test(Tunnel ~ pH, data = example2[-3, ])
with(example2, t.test(Tunnel[pH == "low"], Tunnel[pH== "high"]))
wilcox.test(Tunnel ~ pH, data = example2, paired = TRUE)

Two of the lines of code do another analysis. Which ones and which analysis do they perform instead? Finally,
there is one line of code performing a nonsensical test. Which one, and why does this test not make sense? If
you are stuck, see the next page for hints and remarks!

Hints and remarks:

• The idea of with(my.data, my.expression) is that the variables inside the data frame ‘my.data’ are
available when computing ‘my.expression’. For instance, in the second of the 7 lines, the variables
‘Tunnel’ and ‘Fast’ inside the data frame ‘example2’ are available to the Wilcoxon test.

Thus, the function with() can be used just like a data-option, when the latter is not available.

• Both t.test() and wilcox.test() accept two different input syntaxes called the “Default S3 method”
and “S3 method for class ‘formula’” on the help pages (see ?t.test).

• For two-sample tests the “Default S3 method” requires the samples to be given in two vectors. If we
want these vectors to be taken from a data frame one possibility is to use the with() function as
described above.
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• One advantage of the “S3 method for class ‘formula’” is that the data frame may be specified in the
data-option (see the 4th, 5th and 7th lines of code above. Consider what happens in the 5th line of
code?).

• For more complicated functions like lm(), glm(), and nlme::lme() only the formula method makes
sense.

• To get an improved feeling of the syntax you, of course, are welcome to open RStudio and try the code.

Solution

We load the dataset and print the first few lines to recall the structure:

example2 <- read.table("dataExample2.txt", header = TRUE, dec = ",")
head(example2)

## Pig pH Tunnel Fast
## 1 1 low 7.22 5.56
## 2 2 low 3.11 3.33
## 3 3 low 7.44 7.00
## 4 4 low 4.33 4.89
## 5 5 low 6.78 6.56
## 6 6 low 5.56 5.67

The first call t.test(example2$Tunnel, example2$Fast, paired = TRUE) compares the values of the
tunnel-chilled and fast-chilled pieces of pork using a paired t-test. This is not the analysis we are after.

The second call with(example2, wilcox.test(Tunnel, Fast, paired = TRUE)) does the same analysis
with a Wilcoxon signed rank test. Again, this is not the analysis we are after.

The third call with(example2, wilcox.test(Tunnel ~ pH)) does a two-sample Wilcoxon (sometimes called
a Mann-Whitney test) that compares the tenderness of tunnel-chilled meat for the two pH groups. We run
the test

with(example2, wilcox.test(Tunnel ~ pH))

## Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot
## compute exact p-value with ties

##
## Wilcoxon rank sum test with continuity correction
##
## data: Tunnel by pH
## W = 109.5, p-value = 0.03255
## alternative hypothesis: true location shift is not equal to 0

and conclude that there is indeed a significant difference between the groups (although the evidence is weak).

The fourth call t.test(Tunnel ~ pH, data = example2, var.equal = TRUE) also performs the correct
test but this time via a two-sample t-test with the assumption of equal variances. To be able to apply this
test, we need to check normality within each group and that the variances are equal. We construct a QQ-plot:

ggplot(example2, aes(sample = Tunnel)) +
ylab("Tenderness") + xlab("Standard Gaussian quantile") +
facet_grid(. ~ pH) +
geom_qq() +
geom_qq_line()
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This looks pretty good so normality is reasonable. To check that variance, we use the var.test function.

with(example2, var.test(Tunnel ~ pH))

##
## F test to compare two variances
##
## data: Tunnel by pH
## F = 0.5638, num df = 11, denom df = 11, p-value = 0.3561
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1623067 1.9584875
## sample estimates:
## ratio of variances
## 0.5638046

We conclude that the assumption is reasonable and can now perform the test:

t.test(Tunnel ~ pH, data = example2, var.equal = TRUE)

##
## Two Sample t-test
##
## data: Tunnel by pH
## t = 2.3625, df = 22, p-value = 0.02741
## alternative hypothesis: true difference in means between group high and group low is not equal to 0
## 95 percent confidence interval:
## 0.1686992 2.5929675
## sample estimates:
## mean in group high mean in group low
## 7.222500 5.841667
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The result is significant and broadly similar to the nonparametric test. However, if we had done this analysis
to begin with, we would have to control for the fact that we did the equality of variances test, in which case
this result would not be significant.

The fifth call t.test(Tunnel ~ pH, data = example2[-3, ]) runs the same analysis as above except the
t-test is now a Welch test (we do not assume equal variances) and we have removed the third observation.
We can perform the test:

t.test(Tunnel ~ pH, data = example2[-3, ])

##
## Welch Two Sample t-test
##
## data: Tunnel by pH
## t = 2.5437, df = 18.546, p-value = 0.02006
## alternative hypothesis: true difference in means between group high and group low is not equal to 0
## 95 percent confidence interval:
## 0.2682923 2.7839804
## sample estimates:
## mean in group high mean in group low
## 7.222500 5.696364

We get similar results to the above correct tests.

The sixth call with(example2, t.test(Tunnel[pH == "low"], Tunnel[pH== "high"])) is another way
to call the same test as above (except we did not remove the third observation). We can perform the test:

with(example2, t.test(Tunnel[pH == "low"], Tunnel[pH== "high"]))

##
## Welch Two Sample t-test
##
## data: Tunnel[pH == "low"] and Tunnel[pH == "high"]
## t = -2.3625, df = 20.412, p-value = 0.02818
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.5984588 -0.1632079
## sample estimates:
## mean of x mean of y
## 5.841667 7.222500

Our conclusion is similar.

The final call wilcox.test(Tunnel ~ pH, data = example2, paired = TRUE) computes a paired
Wilcoxon signed rank test between the two groups. The data are really independent amongst the two groups
but a paired test can still be applied. We apply the test:

wilcox.test(Tunnel ~ pH, data = example2, paired = TRUE)

##
## Wilcoxon signed rank exact test
##
## data: Tunnel by pH
## V = 65, p-value = 0.04248
## alternative hypothesis: true location shift is not equal to 0

We see that the p-value is larger than for the corresponding call with an unpaired test. This illustrates why it
is preferable to run an unpaired test to increase power.
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Exercise 2.2 Two by two table: method consideration and understanding data
organization

Problem

A study was conducted of 65 patients who had received or were receiving sodium aurothiomalate as a treatment
for rheumatoid arthritis. The aim was to examine the possibility that toxicity to sodium aurothiomalate (SA)
might be linked to impaired sulphoxidation capacity. The results were:

Major adverse reaction (toxicity)
Impaired sulphoxidation Yes No Total
Yes 30 9 39
No 7 19 26
Total 37 28 65

The authors wrote: “The incidence of impaired sulphoxidation in patients showing SA toxicity (30/37, 81.0%)
was significantly greater than in the group without adverse reaction (9/28, 32.1%) (X2 = 27.6, P < 0.001). Sim-
ilarly, the incidence of toxicity was significantly increased in those with impaired sulphoxidation (30/39, 76.9%)
compared to those with extensive sulphoxidation (7/26, 26.9%) (X2 = 36.2, P < 0.001).’ ’

• Why is it impossible for both of the above chi-squared tests to be correct?

• Carry out a chi-squared test of the data in the table and compare your answer with the two results in
the above paragraph.

Remark: This may be done using either chisq.test() or prop.test(), which will give the same result.
If you do not want the Yates continuity correction then add the option correct=F.

• Compute a 95% confidence interval for the difference between the incidences of toxicity in the group
with impaired sulphoxidation and the group with extensive sulphoxidation.

Help: Here the prop.test() function is helpful.

• Additional questions related to structure of the dataset:

– What are the variables in this study?

– How many observations have been made?

In a call to chisq.test() the observations are provided in a matrix, i.e.

chisq.test(matrix(c(30,7,9,19),2,2))

However, in their original laboratory diary the people who conducted this study probably had the data
organized in 65 rows in a manner akin to:

Patient Impaired sulphoxidation Adverse reaction
1 yes no
2 no no
3 yes yes
4 yes no
...

...
...

64 yes no
65 no yes

Do you agree? Suppose data actually are given like this in a data frame called arthitis. Please try to
decipher the following code:

chisq.test(table(arthritis))
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(References: Altman, Practical Statistics for Medical Research, exercise 10.5, and Ayesh, R., Mitchell, S.C.,
Waring, R.H., et al. (1987): Sodium aurothiomalate toxicity and sulphoxidation capacity in rheumatoid
arthritic patients. Br. J. Rheumatol., 26, 197–201.)

Solution

The dataset consists of 65 observations of two binary variables, namely, the impaired sulphoxidation (yes/no)
and whether an adverse reaction is present (yes/no).

There is only a single chi-squared value for a given table, therefore it is not possible for both computations to
be correct. We can compute the test ourselves using R (with and without continuity correction to see if we
get similar results to the authors):

chisq.test(matrix(c(30, 7, 9, 19), 2, 2), correct = FALSE)

##
## Pearson's Chi-squared test
##
## data: matrix(c(30, 7, 9, 19), 2, 2)
## X-squared = 15.905, df = 1, p-value = 6.661e-05

chisq.test(matrix(c(30, 7, 9, 19), 2, 2))

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: matrix(c(30, 7, 9, 19), 2, 2)
## X-squared = 13.931, df = 1, p-value = 0.0001896

We see that neither test reproduces the test statistic that is claimed.

To compute a 95% confidence interval, we use the prop.test function:

prop.test(matrix(c(30, 7, 9, 19), 2, 2))

##
## 2-sample test for equality of proportions with continuity correction
##
## data: matrix(c(30, 7, 9, 19), 2, 2)
## X-squared = 13.931, df = 1, p-value = 0.0001896
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.2521853 0.7478147
## sample estimates:
## prop 1 prop 2
## 0.7692308 0.2692308

We get that a 95% confidence interval for the difference is given by (0.252, 0.748).

If data was given in long form, the command chisq.test(table(arthritis)) would first compute a table
corresponding to the 2x2 table given in the problem and then apply the chisq.test function (resulting a
correct application of the test).

Exercise 2.3 Analysis of a two-way table
Problem

The effect of dramanine as a remedy against seasickness was studied in an experiment on soldiers who crossed
the Atlantic in a military troop transport. Among 64 people susceptible to seasickness a group of 34 soldiers
were given dramanine while the remaining 30 soldiers received a placebo. The results were:
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Response
Treatment seasick not seasick Total
dramanine 3 31 34
placebo 12 18 30
Total 15 49 64

Analyze the data to see whether dramanine has an effect on seasickness. Try both chisq.test(), prop.test()
and chisq.test.simulate() to do the analysis, and compare the outputs. What is the same, and what is dif-
ferent? (Remember to specify the conditioning-option in chisq.test.simulate() from the LabApplStat-
package.)

A confidence interval for the probability of seasickness in the placebo group may be found using the R code:

prop.test(12,30)

Find a confidence interval for the probability of seasickness in the dramanine group. Is the effect of dramanine
positive or negative?

Now suppose that the data is available in the text-file dramanine.txt, and not in the above table! Read the
dataset into R using

read.table("dramanine.txt",header=T)

(alternatively use the Import Dataset menu) and analyze the data.

(The data are from Chinn, H.I et al. (1950): Prophylaxis of motion sickness: evaluation of some drugs in
seasickness. U.S. Air Force School of Aviation Medicine Project 21-32-014, Rep. 4.)

Solution

To analyze the data, we first enter the table into R as a matrix:

dramanine_table <- matrix(c(3, 12, 31, 18), 2, 2)

It is slightly unclear whether the data is generated with fixed row margins or simply a fixed total, however,
since we are interested in determining whether the probabilities of seasickness change when given dramanine
versus placebo, we are testing a null hypothesis of homogeneity. We first apply a chi-squared test using the
chisq.test function:

chisq.test(dramanine_table)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: dramanine_table
## X-squared = 6.9827, df = 1, p-value = 0.00823

We get a p-value of 0.008 and therefore have pretty strong evidence against the null hypothesis of homogeneity.
We can apply the same test with the prop.test function:

prop.test(dramanine_table)

##
## 2-sample test for equality of proportions with continuity correction
##
## data: dramanine_table
## X-squared = 6.9827, df = 1, p-value = 0.00823
## alternative hypothesis: two.sided
## 95 percent confidence interval:
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## -0.54268981 -0.08083961
## sample estimates:
## prop 1 prop 2
## 0.08823529 0.40000000

We obtain the same p-value but we additionally get a 95% confidence interval for the difference of the
probabilities which is (−0.543, −0.081). This means that the effect of dramanine is most likely negative. We
can obtain a confidence interval for the placebo group by again using the prop.test-function.

prop.test(dramanine_table[2, 1], dramanine_table[2, 1] + dramanine_table[2, 2])

##
## 1-sample proportions test with continuity correction
##
## data: dramanine_table[2, 1] out of dramanine_table[2, 1] + dramanine_table[2, 2], null probability 0.5
## X-squared = 0.83333, df = 1, p-value = 0.3613
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.2322334 0.5924978
## sample estimates:
## p
## 0.4

We get a 95% confidence interval of (0.232, 0.594) in the placebo group. We apply the function again:

prop.test(dramanine_table[1, 1], dramanine_table[1, 1] + dramanine_table[1, 2])

##
## 1-sample proportions test with continuity correction
##
## data: dramanine_table[1, 1] out of dramanine_table[1, 1] + dramanine_table[1, 2], null probability 0.5
## X-squared = 21.441, df = 1, p-value = 3.649e-06
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.02306877 0.24812437
## sample estimates:
## p
## 0.08823529

We get a 95% confidence interval of (0.023, 0.248) in the dramanine group.

Finally, we can apply the chisq.test.simulate function from the LabApplStat-package (with row condi-
tioning):

library(LabApplStat)

## Loading required package: emmeans

chisq.test.simulate(dramanine_table, conditioning = "row", B = 1e5)

##
## Chi-squared test for given row marginals (based on 1e+05 replicates)
##
## data: dramanine_table
## X-squared = 8.6327, p-value = 0.00302
## sample estimates:
## Standard error (p-value)
## 0.0001735189

We get a p-value of 0.003 which aligns well with the results of the chi-squared tests above.
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We can analyze the data from the dramanine.txt file by first loading the data:

dramanine_df <- read.table("dramanine.txt", header=TRUE)

We can then convert the data into a contigency table by using the table function:

new_dramanine_table <- table(dramanine_df)
new_dramanine_table

## seasick
## treatment no yes
## dramanine 31 3
## placebo 18 12

We have now obtained the same table as above and can repeat the analysis.

Exercise 2.4 A case-control study
Problem

In a study, the relation between Hodgkin’s disease and the presence of tonsillectomy was investigated. 85
Hodgkin’s patients had a sibling of the same sex who was free of the disease and whose age was within 5
years of the patient’s. The proportion of tonsillectomies in the Hodgkin’s and the control group (i.e. the
siblings) was presented by the investigators in the following table:

Tonsillectomy No tonsillectomy Total
Hodgkin’s 41 44 85
Control 33 52 85

The following R-call says that there is no relation between Hodgkin’s disease and tonsillectomy (p = 0.2789).
However, this analysis is wrong! Why?

> prop.test(matrix(c(41, 33, 44, 52), 2, 2))

2-sample test for equality of proportions with continuity correction

data: matrix(c(41, 33, 44, 52), 2, 2)
X-squared = 1.1726, df = 1, p-value = 0.2789
alternative hypothesis: two.sided
95 percent confidence interval:
-0.06603241 0.25426771

sample estimates:
prop 1 prop 2

0.4823529 0.3882353

To perform the correct analysis we need more information than given in the above table, e.g. that in 37 of
the patient-sibling pairs neither the patient nor the sibling had tonsillectomy. Use this additional information
to perform the correct analysis.

Solution

The rows of the given table represent different variables (Hodgkin’s and Control) and not different values of
a single variable. Crucially, this means that we have lost the dependence between each patient and their
sibling when looking at the table. An immediate give-away is that we have 85 observations but the given
table makes it seem like we have twice that. All these facts combined result in an incorrect analysis. We can
recover a correct table by using the additional information of 37 pairs with no tonsillectomies. The described
data consists of 85 case-control pairs (boldface numbers are stated in the exercise text):
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Sibling
Patient No tonsillectomy Tonsillectomy Total

No tonsillectomy 37 7 44
Tonsillectomy 15 26 41

Total 52 33 85

As the data is paired binary data, we use the McNemar test which has a null hypothesis that the marginal
proportions are the same, that is, the probability of tonsillectomy is the same for the patients as for siblings.
We can perform the test using the mcnemar.test function:

mcnemar.test(matrix(c(37, 15, 7, 26), 2, 2))

##
## McNemar's Chi-squared test with continuity correction
##
## data: matrix(c(37, 15, 7, 26), 2, 2)
## McNemar's chi-squared = 2.2273, df = 1, p-value = 0.1356

We get a p-value of 0.1356 so there is no significant evidence of a difference in the proportion of tonsillectomies
between the siblings and the patients.

Exercise 2.5 Power calculations
Problem

As discussed in the lectures and in the two papers by Sterne & Smith (2001), and by Gelman & Carlin (2014)
there is a risk of both Type I error (false positives) and of Type S and Type M error (sign and magnitude).
The Type S and M errors are often caused by studies where the power (i.e., the probability of rejecting the
null hypothesis given some hypothesized effect size) is too low. The classical rule of thumb is that the power
should be at least 80%.

R provides some functions (both standard functions, and functions in the package pwr) for doing power
calculations in simple situations. The purpose of this exercise is to try some of these functions:

• Exercise 2.3 is about the effect of the drug dramanine as a remedy against seasickness. Suppose that we
believe that dramanine reduces the risk of seasickness by 75%, e.g. from 50% (with placebo) to 12.5%
(with dramanine). Then the required sample size needed in order to have power=80%, say, may be
found using the following R code:

> power.prop.test(power=0.8,p1=0.50,p2=0.125)

Try this! How many soldiers are needed to have sufficient statistical power in the experiment?

Read more about the function from the help pages ?power.prob.test, and find the required sample
size under different scenarios (power=80%, 90%, and with different proportions of seasickness in the
placebo group, e.g. 30%, 40% and 50%).

• Exercise 1.5 is about the effect of two drugs (E and N) on the treatment of high blood pressure.
The study was done as a cross-over in order to reduce the biological variation between patients. We
hypothesize that the difference between the effects of drug E and drug N is 8 mmHg, and that the
biological variation within patients (as quantified by sd(E_diff_N)) has standard deviation given by
15 mmHg. What is the power with sample size n = 19?

Hint: Use the function power.t.test() with options delta=8, sd=15 and
type="one.sample". See ?power.t.test for further details.

Suppose that the investigators had expected the biological variation within patients to be smaller, e.g.
sd(E_diff_N) = 10. Would this increase or decrease the power of the study?
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Solution

• We run the given line of code:

power.prop.test(power = 0.8, p1 = 0.5, p2 = 0.125)

##
## Two-sample comparison of proportions power calculation
##
## n = 22.76693
## p1 = 0.5
## p2 = 0.125
## sig.level = 0.05
## power = 0.8
## alternative = two.sided
##
## NOTE: n is number in *each* group

and conclude that we need 23 soldiers in each group to obtain 80% power. We can repeat this for
different values of power and proportions of seasickness in the placebo group using the code below. The
expand.grid function returns a data frame with all combinations of the given vectors while the apply
function lets us apply a particular function to each row of the dataframe. We create a table using the
xtabs function which gives the sample size in each group for the different combinations:

powers <- c(0.8, 0.9)
props <- c(0.5, 0.4, 0.3)
df <- expand.grid(power = powers, prop = props)
df$n <- apply(df, 1, function(row) {

ceiling(power.prop.test(power = row["power"], p1 = row["prop"], p2 = 0.125)$n)
})
xtabs(n ~ power + prop, data = df)

## prop
## power 0.3 0.4 0.5
## 0.8 85 39 23
## 0.9 113 52 30

• We use the power.t.test function with the given commands:

power.t.test(delta = 8, sd = 15, type = "one.sample", n = 19)

##
## One-sample t test power calculation
##
## n = 19
## delta = 8
## sd = 15
## sig.level = 0.05
## power = 0.5947301
## alternative = two.sided

and conclude that the power is 59.5%. If the variation is smaller, this should mean a greater separation
between the groups and therefore it should be easier to distinguish differences. We would therefore
expect an increase in power and we can confirm this:

power.t.test(delta = 8, sd = 10, type = "one.sample", n = 19)

##
## One-sample t test power calculation
##
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## n = 19
## delta = 8
## sd = 10
## sig.level = 0.05
## power = 0.909207
## alternative = two.sided

Exercise 2.6 Beauty and Sex ratios
Problem

In this exercise we redo the power calculation presented in the first data example in Gelman & Carlin (2014).
Please read the first column on page 5 in the paper for an introduction to the data example.

To perform the retrospective power analysis suggested by Gelman & Carlin two things are needed, namely a
hypothesized effect size and a standard error1:

• Based on biological knowledge a hypothesized effect size, i.e. change of sex ratio, of 0.001, 0.003 or 0.01
is suggested.

• From the information from the paper Kanazawa (2007) Gelman and Carlin conclude that the standard
error on the change is sex ratio is 0.033.2

The R function retrodesign(), which is available by running the R script retrodesign.R from the zip-file
day2.zip, can be used to do the retrospective power analysis. This function takes two main arguments:

• A=hypothesized effect size.3

• SE=standard error.

Use this function to redo the analysis discussed on the second column of page 5 in the paper. Do you agree
with the remarks made by Gelman and Carlin?

In the penultimate paragraph of the data example on beauty and sex ratio a traditional power calculation
is made. Let us also try this: What is the sample size needed to have power = 80% when comparing the
proportion of girls between attractive and unattractive parents?

• Answer this question using power.prop.test() assuming that the proportion of girls with unattractive
parents is 0.49, and with the 3 different hypothesized effect sizes given above.

Solution

We first run the retrodesign.R script to obtain the retrodesign function:

source("retrodesign.R")

We can now re-do the analysis using the retrodesign function:

retrodesign(c(0.001, 0.003, 0.01), 0.033)

## effect SE power type_S exaggeratio
## 1 0.001 0.033 0.05010520 0.4646377 77.269503
## 2 0.003 0.033 0.05094724 0.3953041 25.909579
## 3 0.010 0.033 0.06058446 0.1950669 7.796669

1Not to be confused with the standard deviation given as input to the power calculations done for the hypertension example
considered in Exercise 2.5.

2If you perform such a retrospective power analysis on your own data, then you will often be able to directly read off the
standard error of the relevant parameter estimate from the R output.

3The function given on page 9 of the paper has been recoded in retrodesign() such that it is possible to give a vector of
possible effect sizes.
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We conclude that even with the largest possible (and somewhat unrealistic) effect size, the probability of
Type S and M errors vastly exceed what would be required for a certain scientific conclusion.

The conventional power analysis for the smallest effect size is:

power.prop.test(power = 0.80, p1 = 0.001 + 0.49, p2 = 0.49)

##
## Two-sample comparison of proportions power calculation
##
## n = 3923022
## p1 = 0.491
## p2 = 0.49
## sig.level = 0.05
## power = 0.8
## alternative = two.sided
##
## NOTE: n is number in *each* group

and we see that we require 3923022 observations in each group. For the middle effect size, we get

power.prop.test(power = 0.80, p1 = 0.003 + 0.49, p2 = 0.49)

##
## Two-sample comparison of proportions power calculation
##
## n = 435921.7
## p1 = 0.493
## p2 = 0.49
## sig.level = 0.05
## power = 0.8
## alternative = two.sided
##
## NOTE: n is number in *each* group

and thus require a sample size of 435922 in each group. Finally, for the largest effect size, we get

power.prop.test(power = 0.80, p1 = 0.01 + 0.49, p2 = 0.49)

##
## Two-sample comparison of proportions power calculation
##
## n = 39239.3
## p1 = 0.5
## p2 = 0.49
## sig.level = 0.05
## power = 0.8
## alternative = two.sided
##
## NOTE: n is number in *each* group

and thus require 39240 observations in each group.

Exercise 2.7 Discretization of continuous variables
Problem

As you know, the analysis of continuous data often assumes underlying normal distributions. The purpose of
this exercise is to convey the idea to discretizing continuous variables into categories, which may then be
analyzed using the methods presented on this course day.
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To illustrate this idea, we use a classical dataset, which contains joint observations of parents heights (a
weighted and corrected average of fathers and mothers heights) and their sons heights (measured in inches).
This dataset has historical relevance since it made Galton invent regression analysis4. The dataset is available
in the text-file Galton.txt and can be read into R using

Galton <- read.table("Galton.txt", header = TRUE, dec = ",", sep = "\t")

Construct a scatter plot of the data using the R code:

plot(child.ht ~ parent.ht, data = Galton, main="Galton's classical dataset")

Investigate whether the height measurements are normally distributed.

Hint: You may e.g. use the qqnorm() function.

After doing this, you should conclude that the height measurements are normally distributed, so probably
there is no need for a discretization here. We will do it anyway to exemplify the idea of categorizing continuous
data. Let us say that a man is small if he is less than 68 inches tall, and tall otherwise. The following R code
makes the cross tabulation of small/tall vs. father/son:

with(Galton, table(parent.tall = (parent.ht > 68), child.tall = (child.ht > 68)))

Analyze the resulting 2-by-2 table to see if there is a relationship between the father’s and their son’s heights.

Solution

We read the data and do as we are told:

Galton <- read.table("Galton.txt", header = TRUE, dec = ",", sep = "\t")
plot(child.ht ~ parent.ht, data = Galton, main="Galton's classical dataset")
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To
investigate the normality of the data, we use the qqnorm function on each of the height distributions:

4We shall see why it is called regression analysis on course Day 4.
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qqnorm(Galton$parent.ht)
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qqnorm(Galton$child.ht)
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Both
variables look normally distributed. We construct the discretized data and save it in a table:

Galton_table <- with(Galton, table(parent.tall = (parent.ht > 68),
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child.tall = (child.ht > 68)))
Galton_table

## child.tall
## parent.tall FALSE TRUE
## FALSE 248 156
## TRUE 189 359

We test whether the heights are independent using a chi-squared test:

chisq.test(Galton_table)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: Galton_table
## X-squared = 66.673, df = 1, p-value = 3.205e-16

we get a p-value of the order 10−16 so we conclude that there is a very strong dependence between the
heights of parents and children. We can get a confidence interval for the difference in proportions using the
prop.test function:

prop.test(Galton_table)

##
## 2-sample test for equality of proportions with continuity correction
##
## data: Galton_table
## X-squared = 66.673, df = 1, p-value = 3.205e-16
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.2048716 0.3330701
## sample estimates:
## prop 1 prop 2
## 0.6138614 0.3448905

We get a 95% confidence interval of the difference in proportions of tall children amongst short and tall parents
of (0.205, 0.333). This indicates that the proportion is higher amongst tall parents (which is unsurprising
when comparing to the scatter plot).
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