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Exercise 3.1 Data representation & Validation of a probit analysis
Problem

The purpose of this exercise is to compare three different representations of the same dataset. Read the three
text files beetle.txt, beetle_long.txt, and beetle_verylong.txt into R using the commands

beetle_A <- read.delim("beetle.txt")
beetle_B <- read.delim("beetle_long.txt")
beetle_C <- read.delim("beetle_verylong.txt")

Have a look at them, e.g. by clicking on them in the Environment window, in order to verify that they encode
the same dataset. Suppose we want to fit the probit model presented in the lecture to the dataset. Replace
the ?-signs by the appropriate data frame (either beetle_A, beetle_B or beetle_C) in the following calls to
glm() in order to achieve this:

glm(cbind(y, n-y) ~ x, data = 7, family = binomial(link = "probit"))
glm(factor(status) ~ x, weights = count, data = 7, family = binomial(link = "probit"))
glm(factor(status) ~ x, data = 7, family = binomial(link = "probit"))

An additional question: What is the purpose of the weights-option?

Above you fitted a probit analysis to three different organizations of the same dataset. Answer and discuss
the following questions:

o Suppose that the correct models for each dataset are called m_A, m_B, and m_C (for beetle_A, beetle_B
and beetle_C, respectively). Verify that the same parameter estimates (and associated p-values) are
found in all three models, e.g. by executing the R code:

summary (m_A)
summary (m_B)
summary (m_C)

e Validate the three models using cumulative residuals. This may be done using the R code:

library (gof)

plot(cumres(m_A))
plot(cumres(m_B))
plot(cumres(m_C))

Does the validity of the model depend on the organization of the dataset?

Remark: Previously version 0.9.1 of the gof-package was available on the CRAN. In that version the
validation was only correctly implemented for the very long'' dataset, that is \verb+beetle_C+. In
version 0.9.2 the bug was fixed for thebinomial’’ representation, that is beetle_A, and if you use



the cumres() function on models with a weight option, as needed for beetle_B, then you get an error
message stating that the weight-option is not supported.

Presently the status of the package is as follows:
e The gof-package has been removed from the CRAN,
e Version 1.0.1 of the gof-package is available from GitHub.

e Apparently the cumres () function gives an error if the used dataset is too large. This must be due to a
bug in the program, which is rather unfortunate.

To install packages from GitHub you must have the devtools-package (may be installed from CRAN) and
Windows users also need Rtools (available from https://cran.r-project.org/bin/windows/Rtools/). Thereafter
you may install from GitHub like this:

library(devtools)
install_github("kkholst/gof")

Try to see if this works on your laptop. If this fails, then do not despair! You can omit this methodology from
yuor work. Actually, not using cumulated residuals was the state of the art until 20 years ago (the paper that
introduced cumulated residuals for categorical regression models is from 2002).

Solution
We load the data:

beetle A <- read.delim("beetle.txt")
beetle_B <- read.delim("beetle_long.txt")
beetle_C <- read.delim("beetle_verylong.txt")

The correct calls are

m_A <- glm(cbind(y, n - y) ~ x, data = beetle_A,
family = binomial(link = "probit"))

m_B <- glm(factor(status) ~ x, weights = count, data = beetle_B,
family = binomial(link = "probit"))

m_C <- glm(factor(status) ~ x, data = beetle_C,
family = binomial(link = "probit"))

The dataframes beetle_B and beetle_C have a binary representation of the datasets where the response
variable status is dead or alive. Be aware that glm models the probability of the last level of the response
variables. In this case, the probability of dead (as dead precedes alive alphabetically).

The factor in m_B and m_C is needed since read.delim() loads the status variable as a character string.
This converts status into a factor which is required for glm. The primary difference between beetle_B and
beetle_C is that the former contains a count variable that provides the number of these observations. Such
a variable is often called a frequency variable and should be specified in the weights option.

The data frame beetle_A provides a binomial representation of the data sets. The response should be given
by binding number of successes (here ‘dead’) together with number of failures (here ’alive) using the cbind
function.

We verify that the parameter estimates and p-values are identical:
summary (m_A)

#it

## Call:

## glm(formula = cbind(y, n - y) ~ x, family = binomial(link = "probit"),
#it data = beetle_A)

##


https://cran.r-project.org/bin/windows/Rtools/

## Deviance Residuals:

## Min 1Q Median 3Q Max
## -1.5714 -0.4703 0.7501 1.0632 1.3449
##

## Coefficients:

#it Estimate Std. Error z value Pr(>|zl)

## (Intercept) -34.935 2.648 -13.19 <2e-16 *xx*x*

## x 19.728 1.487 13.27 <2e-16 **x

## ——-

## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1
##

## (Dispersion parameter for binomial family taken to be 1)
##

it Null deviance: 284.20 on 7 degrees of freedom

## Residual deviance: 10.12 on 6 degrees of freedom

## AIC: 40.318

##

## Number of Fisher Scoring iteratiomns: 4

summary (m_B)

##

## Call:

## glm(formula = factor(status) ~ x, family = binomial(link = "probit"),
H# data = beetle_B, weights = count)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -7.2009 -4.5512 0.6233 5.0666 6.6913
#it
## Coefficients:

#it Estimate Std. Error z value Pr(>lzl)

## (Intercept) -34.935 2.648 -13.19 <2e-16 *xx*

## x 19.728 1.487 13.27 <2e-16 **x*

## ——

## Signif. codes: O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1
##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 645.44 on 14 degrees of freedom

## Residual deviance: 371.36 on 13 degrees of freedom

## AIC: 375.36

##

## Number of Fisher Scoring iterations: 5

summary (m_C)

##

## Call:

## glm(formula = factor(status) ~ x, family = binomial(link = "probit"),
#it data = beetle_C)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.5608 -0.6275 0.1609 0.4500 2.3943
##



## Coefficients:

#i# Estimate Std. Error z value Pr(>|zl)

## (Intercept) -34.935 2.648 -13.19 <2e-16 *x*x

## x 19.728 1.487 13.27 <2e-16 **x*

## ---

## Signif. codes: O '***x' 0.001 '**x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i#

## (Dispersion parameter for binomial family taken to be 1)

#i#

## Null deviance: 645.44 on 480 degrees of freedom

## Residual deviance: 371.36 on 479 degrees of freedom
## AIC: 375.36

#i#

## Number of Fisher Scoring iterations: 6

We can also apply the Goodness-of-Fit tests using cumulative residuals with the gof-package (except the for
model B since the weights option is not supported). The first row contains model validation for m_A, the
second for m_C.

library(gof)
## Loading required package: lava

##
## Attaching package: 'lava'

## The following object is masked from 'package:dplyr':
#i#
## vars

## The following object is masked from 'package:ggplot2':
##
## vars

## Loading 'gof' version 1.0.1

par (mfrow = c(2, 2))
plot(cumres(m_A, R = 10000))
plot(cumres(m_C, R = 10000))
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par (mfrow = c(2, 2))

The conclusions are similar.

Exercise 3.2 Proportional odds model for the chicken gait score example

Problem

The purpose of this exercise is to reanalyse the chicken gait score example from Day 2 (see Day 2 lecture slides
41-47) using the proportional odds model (see Day 3 lecture slides 42-46). The R script exercise3_2.R
contains the dataset, the preparation of the dataset and repetition from Day~2, and the exercise questions.
Execute the lines in the R script one by one and answer the questions.

Solution
We first load the data (with the code that was provided):

library(tidyverse)



activity <- matrix(c(
12, 26, 20, 12,
13, 27, 22, 13,
25, 25, 18, 8,
28, 23, 21, 3
), 4, 4, byrow = TRUE)
rownames (activity) <- paste("Treatment", c("A", "B", "C", "D"))
colnames(activity) <- c("O", "i", "2", "3.5")
activity_long <- activity %>%
as_tibble(rownames = "treat") %>%
pivot_longer(-"treat", names_to = "gait", values_to = "n") %>%
uncount (n) %>%
mutate(treat = factor(treat), gait = factor(gait))

We now fit a multinomial regression model:
library(ordinal)

#i#
## Attaching package: 'ordinal'

## The following object is masked from 'package:dplyr':

##
#it slice
m0 <- clm(gait ~ 1, nominal = ~treat, data = activity_long)

We also fit a proportional odds model:

ml <- clm(gait ~ treat, data = activity_long)
We do a lack-of-fit test:

anova(ml, mO)

## Likelihood ratio tests of cumulative link models:

##

## formula: nominal: link: threshold:

## ml gait ~ treat ~1 logit flexible

## m0 gait ~ 1 ~treat logit flexible

##

#it no.par AIC 1loglLik LR.stat df Pr(>Chisq)
## ml 6 785.71 -386.86

## mO 12 791.91 -383.96 5.799 6 0.4461

We see, that the null hypothesis that the proportional odds assumption is true is not rejected (p = 0.4461).
Thus, we can use the proportional odds model.

We can test the effect of gait by using the drop1 function:
dropl(ml, test = "Chisq")

## Single term deletions

##

## Model:

## gait ~ treat

## Df AIC LRT Pr(>Chi)

## <none> 785.71

## treat 3 792.88 13.166 0.004292 **

#it —-—-

## Signif. codes: O 's*x' 0.001 '%x' 0.01 'x' 0.05 '.' 0.1 ' ' 1



We get a p-value of the same order as the Kruskal-Wallis test but this model is much more interpretable!

We can test whether it is reasonable to use treat as a numeric variable (with values A=1, B=2, C=3, D=4)
in the proportional odds model for ‘gait’:

m2 <- clm(gait ~ as.numeric(treat), data = activity_long)
anova(m2, ml)

## Likelihood ratio tests of cumulative link models:

##

## formula: link: threshold:
## m2 gait ~ as.numeric(treat) logit flexible

## ml gait ~ treat logit flexible

##

## no.par AIC 1loglLik LR.stat df Pr(>Chisq)
## m2 4 783.45 -387.72

## ml 6 785.71 -386.86 1.7369 2 0.4196

We see that the null hypothesis that treat is a numerical variable is not rejected (p = 0.4196). Thus, if we
want we may choose to use treat as a numerical variable in the subsequent analysis. We can again test for
the effect of the numeric treat:

dropl(m2, test = "Chisq")

## Single term deletions

##

## Model:

## gait ~ as.numeric(treat)

## Df AIC LRT Pr(>Chi)

## <none> 783.45

## as.numeric(treat) 1 792.88 11.429 0.0007232 *x*x*

## ——

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

We get power comparable to the test using Spearman’s rank correlation but again we get a much more
interpretable model. We perform pairwise comparisons on m1 using the emmeans package.

library(emmeans)
pairs (emmeans(ml, ~treat))

## contrast estimate SE df z.ratio p.value
## Treatment A - Treatment B -0.0197 0.299 Inf -0.066 0.9999
## Treatment A - Treatment C 0.6372 0.303 Inf 2.106 0.1512
## Treatment A - Treatment D 0.8516 0.303 Inf 2.806 0.0258
## Treatment B - Treatment C 0.6569 0.298 Inf 2.205 0.1218
## Treatment B - Treatment D 0.8712 0.299 Inf 2.916 0.0186
## Treatment C - Treatment D 0.2143 0.299 Inf 0.717 0.8903

##
## P value adjustment: tukey method for comparing a family of 4 estimates

We see that using treat as categorical permits a precise analysis on the differences between the 4 treatments.
Using treat as a numerical variable gives higher power in the effect test but perhaps we lose something in
terms of interpretability.

Exercise 3.3 Logistic regression

Problem

The data table below shows the result of the glutaraldehyde coagulation test (GLA) on 420 cows from
10 Danish dairy herds. The GLA-test is positive or negative and it is believed that the test may reflect



inflammatory disease in the animal. To investigate this hypothesis the result of the test was compared with a
score from a clinical examination of the animal concentrating on udder, limbs and external physical injuries.
This score was 0, 1, 2 or 3 increasing with severity (infection status). The data table shows the number of
cows from the different herds with the eight possible combinations of GLA-test result and clinical score.

Clinical score 0 1 2 3

GLA| - 4+ |- 4+ |- + |- +
Herd1 |26 6 |4 4 | 2 1 1 0
2123 9|5 1 1 1 1 2
313 3|5 114 0| 4 13
4120 18 | 4 1 3 1 0 4
5124 8 |3 1|0 o0]0 1

6/ 0 0|5 5 1]10 7|5 9
710 8|5 910 6|5 1

81 2 014 1|12 4|8 6

91 1 o0 0|14 7 |11 7
10| 0 0 1 2 4 16 | 1 16

Use a logistic linear model to investigate how the GLA-test result relates to the clinical score and to the herd
(dataset is available in the text file GLA.txt). Estimate an odds-ratio for being GLA-positive for animals
with clinical score 1 (respectively 2 and 3) relative to those with clinical score 0.

If you are stuck, consult the hints below:

1. The explanatory variables herd and clin may be used as categorical variables (instead of continuous
variables) by appropriately using the factor () inside the model formula.

2. If you use factor(clin) as a main effect in the model, then the associated parameters will be log(odds
ratio) against clinical score=0.

3. Remember to backtransform the parameter estimates by the exponential function! Why?
(Data from project report by Trine T{s}b{a}ll (1999): Use of Glutaraldehyde test as an indicator of
inflammatory diseases in dairy herds, KVL.)
Solution
We load the data and fit a logistic regression:

gla <- read.delim("GLA.txt")
ml <- glm(cbind(positive, negative) ~ factor(herd) + factor(clin),
data = gla, family = binomial

)
To validate the model, we use cumulative residuals:

library(gof)
plot(cumres(ml, R = 10000))
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model seems valid from the cumulative residuals. We test for effect of herd and clin:
dropl(ml, test = "Chisq")

## Single term deletions

##

## Model:

## cbind(positive, negative) ~ factor(herd) + factor(clin)
## Df Deviance AIC LRT Pr(>Chi)

## <none> 30.050 132.34

## factor(herd) 9 76.712 161.01 46.662 4.537e-07 **x*

## factor(clin) 3 43.354 139.65 13.304 0.004023 **

## ——-

## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The

Both effects are highly significant with herd having a p-value of the order 10~7 and clin of the order 107",
We can get estimates and confidence intervals for odds-ratios (remembering to back-transform using exp):

exp(cbind(OR = coef(ml), confint(ml)))

## Waiting for profiling to be done...

#it OR 2.5 % 97.5 %
## (Intercept) 0.3166962 0.1492058 0.6222535
## factor(herd)2 1.2300104 0.4748104 3.2291469
## factor(herd)3  3.4144303 1.2781352 9.5538582
## factor(herd)4 2.5187150 1.0584879 6.2668179
## factor(herd)s 1.1260654 0.4074258 3.0941156
## factor(herd)6  2.0068265 0.7096095 5.8609880
## factor(herd)7  3.5555890 1.4003805 9.4704194
## factor(herd)8 0.7285187 0.2354669 2.2378960
## factor(herd)9  0.8450058 0.2780743 2.5946457
## factor(herd)10 10.2869365 3.1243291 37.9667638
## factor(clin)l  0.9989646 0.5046004 1.9478748
## factor(clin)2  1.2957088 0.5927539 2.8312000
## factor(clin)3  3.2565999 1.4903271 7.2652412



We can present the clin results nicely by rounding:

round (exp(cbind(0R = coef(ml), confint(ml))[11:13, 1), digits = 4)

## Waiting for profiling to be

## OR 2.5 %
## factor(clin)l 0.9990 0.5046
## factor(clin)2 1.2957 0.5928
## factor(clin)3 3.2566 1.4903

done. ..

97.5 %
1.9479
2.8312
7.2652

We get odds-ratios of 0.999, 1.296 and 3.257 for the odds-ratios of groups 1, 2 and 3 versus 0, respectively.
We could also have use the emmeans package to obtain these:

library(emmeans)

confint (pairs(emmeans(ml, ~clin), type = "response", reverse = TRUE))

## contrast odds.ratio SE df asymp.LCL asymp.UCL
## clinl / clinO 0.999 0.343 Inf 0.413 2.41
## clin2 / clinO 1.296 0.515 Inf 0.467 3.60
## clin2 / clini 1.297 0.486 Inf 0.495 3.40
## clin3 / clinO 3.257 1.311 Inf 1.157 9.16
## clin3 / clinl 3.260 1.249 Inf 1.219 8.72
## clin3 / clin2 2.513 0.852 Inf 1.052 6.00
##

## Results are averaged over the levels of: herd

## Confidence level used: 0.95

## Conf-level adjustment: tukey method for comparing a family of 4 estimates
## Intervals are back-transformed from the log odds ratio scale

The results can be seen in rows 1, 2 and 4.

Exercise 3.4 Proportional odds model
Problem

In a survey of the usage of Oslomarka (recreational area around Oslo) 365 people were classified by how often
they walk in the forest and how far they walk. The dataset listed below is taken from (Haakenstad, 1975):

Walking distance in km
Frequency of walks <25 255 510 1020 > 20 | Total
F1: Each week 14 29 80 56 16 195
F2: Each month 9 22 30 17 4 82
F3: Sometimes during the season 24 23 30 9 2 88
Total 47 74 140 82 22 365

The dataset is available in the text file walks.txt. Please do the following statistical analyses and present
their conclusions:

e An ordinal logistic regression of distance on frequency. Is the proportional odds assumption valid?
Provide estimates and confidence intervals for the odds-ratio of walking shorter distances relative to
frequency group F1.

Remark: If use want to use distance as the response in an ordinal regression, then this variable should
be encoded as a factor. This can be done directly in the call to c1m():

clm(factor(distance) ~ frequency, data = walks, weights = count)

10



e An ordinal logistic regression of frequency on distance. Try to use distance both as a factor and as a
continuous covariate!. Is the proportional odds assumption valid? Provide estimates and confidence
intervals for the odds-ratio of walking less frequently when walking distance is increased.

Remark: The variable frequency is already encoded as a factor in the data frame, so it can be used
as a response in clm() without any further ado. However, the following code doing a multinomial
regression of frequency on the numerical variable distance used as a categorical factor? does not work
on my laptop:

clm(frequency ~ 1, nominal = ~factor(distance), data = walks, weights = count)
This must be seen as a bug in the ordinal-package. Luckily there is a fix, namely
clm(frequency ~ 1, nominal = ~factor(walks$distance), data = walks, weights = count)

e What are the differences between the three statistical analysis done above, e.g. in their interpretation
and in their power to falsify the hypothesis of no association?

Solution
We load the data and examine it:

walks <- read.delim("walks.txt")
str(walks)

## 'data.frame': 15 obs. of 3 variables:

## $ frequency: chr "F1" "Fi" "F1" "F1"

## $ distance : num 1 3.5 7.5 156 251 3.5 7.5 15 25 ...
## $ count : int 14 29 80 56 16 9 22 30 17 4 ...

We see that frequency is loaded as a character but to use it in the modelling to come, we need it to be a
factor. We convert it:

walks$frequency <- factor(walks$frequency)
We first model distance on frequency and do a lack-of-fit test of the proportional odds assumption:

m0 <- clm(factor(distance) ~ 1,
nominal = ~frequency, data =
weights = count

)

ml <- clm(factor(distance) ~ frequency, data = walks, weights = count)

anova(mi, mO)

walks,

## Likelihood ratio tests of cumulative link models:

##

#i#t formula: nominal: link: threshold:
## ml factor(distance) ~ frequency -~1 logit flexible
## m0 factor(distance) ~ 1 ~frequency logit flexible
##

#Hit no.par AIC 1logLik LR.stat df Pr(>Chisq)

## ml 6 1041.2 -514.60

## mo 12 1051.1 -513.54 2.1307 6 0.9073

The proportional odds assumption is valid, and we proceed with effect testing:

dropl(ml, test = "Chisq")

1Possibly on a logarithmic scale — the reason that it might be a good idea to use the continuous covariate on this scale is that
the odds are also modelled on a log scale!
2The multinomial regression is needed as the reference model in the Lack-of-Fit test for the proportional odds assumption.

11



## Single term deletions

##

## Model:

## factor(distance) ~ frequency

## Df AIC LRT Pr(>Chi)

## <none> 1041.2

## frequency 2 1073.6 36.433 1.227e-08 **x*

## ——-—

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

We see that frequency is highly significant (p of the order 1078). We summarize the effects of higher
frequency on the probability of walking shorter distances:

exp(cbind("0R vs F1" = coef(ml) [6:6], confint(ml)[]))

#i#t OR vs F1 2.5 % 97.5 Y%
## frequencyF2 0.5365125 0.3338243 0.8595484
## frequencyF3 0.2378911 0.1467453 0.3824607

We now model frequency on distance and check the proportional odds assumption:

m0 <- clm(frequency ~ 1,
nominal = ~ factor(walks$distance), data = walks,
weights = count
)
ml <- clm(frequency ~ factor(distance), data = walks, weights = count)
anova(ml, mO)

## Likelihood ratio tests of cumulative link models:

#i#

## formula: nominal: link: threshold:
## ml frequency ~ factor(distance) -~1 logit flexible
## mO frequency ~ 1 ~factor(walks$distance) logit flexible
#i#

#Hit no.par AIC 1loglLik LR.stat df Pr(>Chisq)

## ml 6 715.61 -351.81

## mO 10 721.18 -350.59 2.4338 4 0.6565

The proportional odds assumption is valid, and we proceed with effect testing
dropl(ml, test = "Chisq")

## Single term deletions

##

## Model:

## frequency ~ factor(distance)

## Df AIC LRT Pr(>Chi)

## <none> 715.61

## factor(distance) 4 743.74 36.129 2.722e-07 *x*x

## ———

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Effect of distance is highly significant. Let us see if the categorical distance may be used as a continuous
variable instead by testing against the proportional odds model:

m2 <- clm(frequency ~ distance, data = walks, weights = count)
anova(m2, mi)

## Likelihood ratio tests of cumulative link models:
##

12



##
##
##
##
##
##
##
##
##

formula: link: threshold:
m2 frequency ~ distance logit flexible
ml frequency ~ factor(distance) logit flexible
no.par AIC 1loglLik LR.stat df Pr(>Chisq)
m2 3 716.19 -355.09
ml 6 715.61 -351.81 6.574 3 0.08679 .
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

We get a valid model fit (by testing) but we increase AIC and the p-value is relatively small (around 0.08).
We try distance on the logarithmic scale instead:

m3

<~ clm(factor(frequency) ~ log(distance), data = walks, weights = count)

anova(m3, ml)

##
##
##
##
##
##
##
##
##

Likelihood ratio tests of cumulative link models:

formula: link: threshold:
m3 factor(frequency) ~ log(distance) logit flexible
ml frequency ~ factor(distance) logit flexible
no.par AIC 1logLik LR.stat df Pr(>Chisq)
m3 3 710.10 -352.05
ml 6 715.61 -351.81 0.489 3 0.9213

Now the model fit looks much nicer! We can test the effect of distance as a continuous variable (on the
log-scale):

dropl(m3, test = "Chisq")

##
##
##
##
##
##
##
##
##

Single term deletions

Model:
factor(frequency) ~ log(distance)
Df AIC LRT Pr(>Chi)
<none> 710.10
log(distance) 1 743.74 35.64 2.373e-09 **x*

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

This gives even smaller p-values than above. We can give the estimated odds ratio for walking less frequently
when the person usually walks twice as long:

exp(log(2) * cbind(estimate = coef(m3) [3], confint(m3)))

##
##

estimate 2.5 % 97.5 %
log(distance) 0.6206576 0.5267625 0.7277036

Exercise 3.5 Poisson regression

Problem

In an investigation of the soil profile at Mejlbjerg Hoved the number of fine gravel particles categorized in the
4 groups crystalline, sediment grains, chalcedony chert, and quartz grains were counted in three depth levels
at two different locations. The dataset listed below was taken from (Bl{ee}sild and Granfeldt, 1995):
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depth: 4-11 meters 11-14 meters 18-20 meters
location: A B A B A B
Crystalline 207 205 87 104 159 142
Sediment grains 48 61 23 14 19 12
Chalcedony chert | 15 12 46 64 94 100
Quartz grains 30 28 133 127 41 51

The two locations (A and B) serve as blocks and should not be used in interactions. But the interaction
of particle type and depth may be relevant. Perform a Poisson regression of the dataset (available in
particles.txt) and report the estimate and its confidence interval of the relative risk of sediment grains
against quartz grains at 11-14 meters. Consider also the following questions:

e What is the interpretation of the relative risk requested above? Could you think of a more easy way of
computing this estimate?

o If the estimate for the relative risk can be computed directly from the dataset, what has then been
achieved by the Poisson regression?

If you are unsatisfied with the model validity you might try the option family=quasipoisson in the glm()-call,
cf. Section 10.1.2 in the R guide.

(This exercise was conceived on the basis of exercise 10.1 in Bo Martin Bibby: “Noter til Regressionsanalyse’’
(in danish).)

Solution

We load the data and perform a logistic regression:

particles <- read.delim("particles.txt")
ml <- glm(count ~ location + type * depth, data = particles, family = poisson())

We validate the model using cumulative residuals:

library(gof)
plot(cumres(ml, R = 10000))
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model is barely valid. We can perhaps solve this by allowing for more variance than what is native to the
Poisson distribution by using a quasipoisson family:

m2 <- glm(count ~ location + type * depth,
data = particles,
family = quasipoisson()

)

plot(cumres(m2, R = 10000))
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has improved the model fit from p around 0.05 to around 0.07. We can test for effects:

dropl(m2, test = "Chisq")

## Single term deletions

#i#

## Model:

## count ~ location + type * depth

#it Df Deviance scaled dev. Pr(>Chi)

## <none> 12.44

## location 1 12.62 0.16 0.6911

## type:depth 6  458.88 396.50 <2e-16 **x*

## -—-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The interaction between type and depth is highly significant, i-e. the occurence of the particle types vary
with the depth. Despite location not being significant (p = 0.6911), we keep it in the model. We can extract
parameter estimates and confidence intervals:

cbind(estimate = coef(ml), confint(ml))
## Waiting for profiling to be done...

#it estimate 2.5 % 97.5 %
## (Intercept) .569276131 2.18775248 2.9508246
## locationB .01975915 -0.07208172 0.1116278
## typeCrystalline .72518648 2.35652794 3.1383454
## typeQuartz_grains .76460614 0.31865340 1.2360639

O N O N
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## typeSediment_grains 1.39551102 0.99035505 1.8365079
## depthl1-14 meters 1.40464350 0.99992417 1.8453103
## depth18-20 meters 1.97202129 1.58830378 2.3967294
## typeCrystalline:depthl1-14 meters -2.17339342 -2.64520120 -1.7329899

## typeQuartz_grains:depthl1-14 meters 0.09559512 -0.42392621 0.5957368
## typeSediment_grains:depthl1-14 meters -2.48507347 -3.06366901 -1.9366965
## typeCrystalline:depth18-20 meters —-2.28593438 -2.73474020 -1.8733878
## typeQuartz_grains:depth18-20 meters -1.51067573 -2.04256309 -1.0001937
## typeSediment_grains:depth18-20 meters -3.22938197 -3.81495438 -2.6791593

To get the relative risk, we again use emmeans:

confint (pairs(emmeans(m2, ~ type | depth), reverse = TRUE),

adjust = "none", type = "response"
)
## depth = 04-11 meters:
## contrast ratio SE df asymp.LCL asymp.UCL
## Crystalline / Chalcedony_chert 15.259 3.2166 Inf  10.0950 23.065
## Quartz_grains / Chalcedony_chert 2.148 0.5311 Inf 1.3232 3.487
## Quartz_grains / Crystalline 0.141 0.0209 Inf 0.1052 0.188
## Sediment_grains / Chalcedony_chert 4.037 0.9209 Inf 2.5817 6.313
## Sediment_grains / Crystalline 0.265 0.0302 Inf 0.2115 0.331
## Sediment_grains / Quartz_grains 1.879 0.3241 Inf 1.3403 2.635
#i#
## depth = 11-14 meters:
## contrast ratio SE df asymp.LCL asymp.UCL
## Crystalline / Chalcedony_chert 1.736 0.2205 Inf 1.3537 2.227
## Quartz_grains / Chalcedony_chert 2.364 0.2853 Inf 1.8657 2.994
## Quartz_grains / Crystalline 1.361 0.1377 Inf 1.1165 1.660
## Sediment_grains / Chalcedony_chert 0.336 0.0678 Inf 0.2265 0.499
## Sediment_grains / Crystalline 0.194 0.0369 Inf 0.1333 0.281
## Sediment_grains / Quartz_grains 0.142 0.0265 Inf 0.0987 0.205
##
## depth = 18-20 meters:
## contrast ratio SE df asymp.LCL asymp.UCL
## Crystalline / Chalcedony_chert 1.552 0.1516 Inf 1.2812 1.879
## Quartz_grains / Chalcedony_chert 0.474 0.0637 Inf 0.3645 0.617
## Quartz_grains / Crystalline 0.306 0.0386 Inf 0.2386 0.392
## Sediment_grains / Chalcedony_chert 0.160 0.0328 Inf 0.1069 0.239
## Sediment_grains / Crystalline 0.103 0.0206 Inf 0.0696 0.152
## Sediment_grains / Quartz_grains 0.337 0.0743 Inf 0.2188 0.519

##

## Results are averaged over the levels of: location
## Confidence level used: 0.95

## Intervals are back-transformed from the log scale

This gives a relative risk estimate of 0.142 with a confidence interval of (0.0987,0.205). The relative risk gives
the proportion of sediment grains relative to quartz grains. We could have computed this immediately from
the given table:

(23 + 14) / (133 + 127)
## [1] 0.1423077

However, this estimate comes without confidence intervals or other forms of uncertainty quantification.
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