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Exercise 4.1 Multilinear regression and multicollinearity
Problem

Multilinear regression refers to the situation where several continuous covariates are used together as
explanatory variables in a regression analysis. When doing a multilinear regression you should be aware of
the potential pitfalls that may arise if the covariates are multicollinear. The purpose of this exercise is to
exemplify these pitfalls. This exercise should be done without opening RStudio, but if you want to try the R
code yourselves you may find the dataset in the file wage.txt.

We consider data taken from The Current Population Survey (CPS) made in the US in 1985. The dataset
contains observations of the following 6 variables for 532 individuals:

edu: length of the person’s total education in years.

sex: gender of the person’s (1=female, 0=male).

exper: length of the person’s working experience in years.

wage: wage in US dollars per hour.

age: age of the person in years.

occup: profession (1=management, 2=trade, 3=office, 4=service, 5=craft, 6=other).

The following R code fits a multilinear regression of wage on length of education, length of working experience,
and age among women working with craftsmanship1:

> summary(lm(wage ~ edu + exper + age,
data = subset(wage, (sex == 1) & (occup == 5))))

Call:
lm(formula = wage ~ edu + exper + age, data = wage_subset)

Residuals:
Min 1Q Median 3Q Max

-6.5109 -2.9453 -0.6629 2.0672 14.0105

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -15.4931 6.6457 -2.331 0.024 *
1Model validation would reveal that it is better to model the logarithm of the wage but in order not to give the impression that

responses should always be log-transformed (which is true!), and also to keep the interpretations of the parameters estimates as
simple as possible, we will not transform the response variable. This is ok since the emphasis of this exercise is multicollinearity
and not model validity.
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edu 0.7059 0.8524 0.828 0.412
exper -0.6247 0.8723 -0.716 0.477
age 0.6775 0.7964 0.851 0.399
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.593 on 48 degrees of freedom
Multiple R-squared: 0.3097, Adjusted R-squared: 0.2666
F-statistic: 7.179 on 3 and 48 DF, p-value: 0.0004461

From the model summary we see that neither of the 3 explanatory variables are close to significance. However,
the multilinear regression still explains 30.97% (i.e. the R2) of the variation in the wages, and taken together
the 3 explanatory variables are highly significant (p = 0.0004461).

• Compare the summary-output to the statements made above and confirm that the reporting of hypothesis
tests and R2 is correct.

• Is there an interpretation of the sign of the estimates for the 3 slopes? E.g. do craftswomen earn more
if they have more working experience? Or is it impossible to make such an interpretation in this case?

• An automated backward model reduction would proceed by removing exper being the least significant
variable. However, what are the arguments for removing age instead?

The fit of the multilinear regression after removal of age is given on the next page. Please consider the
following questions:

• What has happened to the p-values for edu and exper?

• What has happened to the sign of the slope of exper? Do you think that the positive sign makes more
sense? Why/why not?

> summary(lm(wage ~ edu + exper,
data = subset(wage, (sex == 1) & (occup == 5))))

Call:
lm(formula = wage ~ edu + exper, data = subset(wage, (sex ==

1) & (occup == 5)))

Residuals:
Min 1Q Median 3Q Max

-5.9828 -3.0854 -0.6495 1.7550 14.1748

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.85350 5.07118 -2.337 0.0235 *
edu 1.38007 0.31307 4.408 5.68e-05 ***
exper 0.11552 0.06237 1.852 0.0700 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.581 on 49 degrees of freedom
Multiple R-squared: 0.2993, Adjusted R-squared: 0.2707
F-statistic: 10.47 on 2 and 49 DF, p-value: 0.0001641

The following output from R shows that edu and exper may be considered uncorrelated in the subpopulation
of craftswomen. Does this have any implication for the interpretation of the slope estimates on edu and
exper given above? Why/why not? And what if edu and exper actually are negatively correlated, i.e. if
working experience in general is shorter for craftswomen with a longer education?
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> with(subset(wage, (sex == 1) & (occup == 5)), cor.test(edu, exper))

Pearson's product-moment correlation

data: edu and exper
t = -1.0381, df = 50, p-value = 0.3042
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.4022055 0.1329212

sample estimates:
cor

-0.1452478

Multicollinearity means that some of the covariates explains the same property in the experimental units
e.g. if you have a long education as well as long working experience, then you will most likely also have a
comparably high age. It stands to reason that we will only need two of the three variables edu, exper, age
in order to characterize these properties of a person. To decide which two of these variables provides the
“correct’ ’ explanation can not be done based on statistics, but relies on the interpretation of the variables.
When there is multicollinearity among the explanatory variables, the p-values may change from non-significant
to highly significant and the estimates may change sign after model reduction. That there is multicollinearity
in the present dataset may be seen from the following analysis2

> summary(lm(age ~ edu + exper, data = wage))

Call: lm(formula = age ~ edu + exper, data = wage)
Residuals:

Min 1Q Median 3Q Max
-3.8507 -0.3801 -0.0122 0.4081 2.1230

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.09160 0.19182 31.76 <2e-16 ***
edu 0.98494 0.01281 76.91 <2e-16 ***
exper 1.05558 0.00271 389.51 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7235 on 529 degrees of freedom
Multiple R-squared: 0.9966, Adjusted R-squared: 0.9966
F-statistic: 7.793e+04 on 2 and 529 DF, p-value: < 2.2e-16

Please do the following:

• Comment on the R2-value as well as the significance tests.

• What is the interpretation of the estimate of the intercept?

• What is the interpretation of the null hypothesis that the slopes on edu and exper both equal 1?

• What is the interpretation of the error term, and the RMSE = 0.7235?

Solution

We first load the data and reproduce the summary.

wage <- read.delim("wage.txt")
summary(lm(wage ~ edu + exper + age,

2A few more suggestions for the identification of multicollinearity may be found in the solution to the exercise.
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data = subset(wage, (sex == 1) & (occup == 5))))

##
## Call:
## lm(formula = wage ~ edu + exper + age, data = subset(wage, (sex ==
## 1) & (occup == 5)))
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5109 -2.9453 -0.6629 2.0672 14.0105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.4931 6.6457 -2.331 0.024 *
## edu 0.7059 0.8524 0.828 0.412
## exper -0.6247 0.8723 -0.716 0.477
## age 0.6775 0.7964 0.851 0.399
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.593 on 48 degrees of freedom
## Multiple R-squared: 0.3097, Adjusted R-squared: 0.2666
## F-statistic: 7.179 on 3 and 48 DF, p-value: 0.0004461

We see that despite the fact that none of the covariates are significant, the R2 is around 0.31 and that taken
together the three variables are highly significant with a p-value around 0.0004. This model is very difficult
to interpret though as any increase in exper or edu necessarily also result in an increase in age and for most
people we would expect exper + edu to be equal to around age (minus some fixed intercept). While the
p-value of exper is the largest and thus would be automatically omitted by an algorithm, it seems more
natural to remove age as we can at least think of education and work experience as distinct quantities. We
fit this model:

summary(lm(wage ~ edu + exper, data = subset(wage, (sex == 1) & (occup == 5))))

##
## Call:
## lm(formula = wage ~ edu + exper, data = subset(wage, (sex ==
## 1) & (occup == 5)))
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9828 -3.0854 -0.6495 1.7550 14.1748
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11.85350 5.07118 -2.337 0.0235 *
## edu 1.38007 0.31307 4.408 5.68e-05 ***
## exper 0.11552 0.06237 1.852 0.0700 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.581 on 49 degrees of freedom
## Multiple R-squared: 0.2993, Adjusted R-squared: 0.2707
## F-statistic: 10.47 on 2 and 49 DF, p-value: 0.0001641

We see that the p-values of both edu and exper have decreased significantly. In addition, the slope of exper
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has become positive which is closer to what one would expect; increases in work experience usually lead to
higher wages. We can check that the remaining two covariates are uncorrelated:

with(subset(wage, (sex == 1) & (occup == 5)), cor.test(edu, exper))

##
## Pearson's product-moment correlation
##
## data: edu and exper
## t = -1.0381, df = 50, p-value = 0.3042
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.4022055 0.1329212
## sample estimates:
## cor
## -0.1452478

The fact that we can accept the hypothesis that these covariates are independent means that we can freely
interpret the slopes independently of each other. If the correlation was negative, then we would have to keep
in mind that an increase in, say, exper would usually result in a decrease of edu thus we could not view each
slope estimate in isolation. We can show that the original three variables were highly collinear by performing
the following analysis:

summary(lm(age ~ edu + exper, data = wage))

##
## Call:
## lm(formula = age ~ edu + exper, data = wage)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8507 -0.3801 -0.0122 0.4081 2.1230
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.09160 0.19182 31.76 <2e-16 ***
## edu 0.98494 0.01281 76.91 <2e-16 ***
## exper 1.05558 0.00271 389.51 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7235 on 529 degrees of freedom
## Multiple R-squared: 0.9966, Adjusted R-squared: 0.9966
## F-statistic: 7.793e+04 on 2 and 529 DF, p-value: < 2.2e-16

We see that edu and exper almost perfectly predict age (R2 = 0.9966) and that both variables are required
for the prediction (as the p-values are tiny). The intercept estimate tells us that a good estimate of the
number of years without partaking in work or education is around 6. The hypothesis that both slopes are
equal to one correspond to the hypothesis that age is equal to a fixed number plus the number of years of
education plus the number of years of work experience, that is, that working and studying do not happen
simultaneously. The error term tells us about the deviation of each individual from the population average
and the RMSE of 0.7235 is an estimate of the standard deviation of the error term. If the errors were normally
distributed, we would expect 95% of ages to lie within ±1.96 · 0.7235 = 1.418 of the population average.

An alternative way of spotting correlation between variables is to plot pairs of explanatory variables and
computing their correlations:

pairs(wage[(wage$sex == 1) & (wage$occup == 5), c("edu", "exper", "age")])
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cor(wage[(wage$sex == 1) & (wage$occup == 5), c("edu", "exper", "age")])

## edu exper age
## edu 1.00000000 -0.1452478 0.03645816
## exper -0.14524783 1.0000000 0.98089765
## age 0.03645816 0.9808977 1.00000000

Here, it is already clear that age and exper are highly correlated. There is a fancy ggplot version of this
plot in the GGally package:

library(GGally)

## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2

ggpairs(wage[(wage$sex == 1) & (wage$occup == 5), c("edu", "exper", "age")])
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It can be harder to spot correlation between 3 or more variables from these plots. One way to catch this is to
perform a Principal Components Analysis (PCA):

summary(
prcomp(wage[(wage$sex == 1) & (wage$occup == 5), c("edu", "exper", "age")],

scale = TRUE
)

)

## Importance of components:
## PC1 PC2 PC3
## Standard deviation 1.4096 1.0053 0.05003
## Proportion of Variance 0.6623 0.3368 0.00083
## Cumulative Proportion 0.6623 0.9992 1.00000

The cumulative proportion tell us how much variance in the data is explained with 1, 2 or 3 variables,
respectively. We see that more than 99.9% of variance is explained by just using two variables (which indicates
multicollinearity).

Exercise 4.2 ANCOVA, statistical modeling, and more
Problem

In this exercise we investigate the world records for outdoor running distances. The records were taken from
the website http://www.iaaf.org of the International Association of Athletics Federation on May 7, 2011.
We want to examine the dependence of the record (time) on the distance, and to examine the difference
between men and women. The purpose of this exercise is to give a non-trivial example of the choices needed
in making simple statistical models with sensible interpretations.

The following items guide you through such an analysis step-by-step:
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• Read the dataset available in the text file WR2011.txt into R (in a data frame called wr), and have a
look at the variables:

– Please note that the distances are more or less doubled between consecutive running disciplines.
Thus, the running distances are almost equidistant on a logarithmic scale.

– The variable DOB contains the data-of-birth of the record holder. The variables Place and Date
contain the place and date of the record. These variables will not be used in this exercise.

– The variable bend is not in the original data, and will be used later. This variable quantifies how
many times longer than 1500 meters the running distance in question is, and it is set to 1 if the
distance is shorter than 1500 meters.

– Make sure that the variables time, distance and bend are numerical, and that sex is a categorical
factor.

• Produce a plot of time against distance using the code:

library(ggplot2)
ggplot(wr) + geom_point(aes(x = distance, y = time, col = sex))

This plot corresponds to the relationship:

time = α+ β · distance.

The parameter β describes the running velocity. Thus, in this model the running velocity is the same
no matter the distance. Is this realistic?

• Create a plot of log(time) against log(distance). This plot corresponds to the relationship:

log(time) = α+ β · log(distance).

Taking the exponential function on both sides we find:

time = exp(α) · log(distance)β .

It is not obvious that this is a good model. But what do you think looking at the plot?
• Perform the following linear regression:

m1 <- lm(log(time) ~ sex + log(distance) + sex:log(distance), data = wr)

In this model both the α and the β parameter depend on the gender:

log(timei) = α(sexi) + β(sexi) · log(distancei) + errori.

Such a model is called an ANCOVA (ANalysis of COVAriance). The ANCOVA will allow us to compare
the records for men and women.

• Is this ANCOVA model valid? Look in particular at the residual plot (called “Residuals vs Fitted” if
you use plot(m1)). It seems there is a bend at observations number 6 and 22. One way to identify
these observation numbers is to use the identify() function. To use this the residual plot should fill
the entire graphics window, so we will make it again. Try the R code3

par(mfrow=c(1, 1))
plot(predict(m1), residuals(m1))
identify(predict(m1), residuals(m1))

and use the mouse to click on the points where you think the bend is positioned. After you are done,
finish the identifier as signified in the graphics window (in Windows you should press the Esc-key).

Remark: If identity() does not work inside RStudio, then a solution might be to open a separate
graphical device using the function x11() before making the plot.

3The line par(mfrow=c(1, 1)) is only necessary if you did par(mfrow=c(2, 2)) before.
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• Check that observations number 6 and 22 correspond to the 1500-meter distance for men and women,
respectively. Thus, there appears to be a difference between short running distances (less than 1500
meters) and long running distances (more than 1500 meters).

• In order to allow the regression lines to bend at 1500 meters we include the variable bend in the
ANCOVA model:

log(timei) = α(sexi) + β(sexi) · log(distancei) + γ(sexi) · log(bendi) + errori.

Fit this model.

• Is the extended ANCOVA model valid? (Hint: No.)

• Refit the extended ANCOVA without using observations number 1, 11, 12, 14, 15, 17, 27, 28, 30, and
31. This may be done using the option

data = wr[-c(1, 11, 12, 14, 15, 17, 27, 28, 30, 31),]

in the call to lm(). Does this improve the model validity?

• Which distances do the removed observations represent? Do you think it is fair to remove the world
records for these running distances from the present analysis? Why/why not?

Hint: This may require some knowledge about athletics.

In any case, for the remainder of this exercise you should remove these observations from the analysis.

• Use the function step() to do model selection based on the Akaike Information Criterion.

• The AIC-based selection should result in the model, where the interactions between sex and
log(distance), log(bend) are removed:

log(timei) = α(sexi) + β · log(distancei) + γ · log(bendi) + errori.

Thus, the difference between men and women is only via the alpha parameter. Convince yourself that
the number

exp
(
α(woman) − α(man)

)
quantifies how much slower the women run than the men.

• Give a 95% confidence interval for the relative running speed of women compared to men.

Hint: The contrast α(woman) − α(man) is called sexwoman in the parametrization used by R.

(Reference: Based on exercise 8.2 from Anders Tolver & Helle Sørensen: Lecture notes for Applied Statistics.)

Solution

We load the data and check the datatypes:

wr <- read.delim("WR2011.txt")
str(wr)

## 'data.frame': 32 obs. of 9 variables:
## $ time : num 9.58 19.19 43.18 101.01 131.96 ...
## $ distance : num 100 200 400 800 1000 1500 2000 3000 5000 10000 ...
## $ bend : num 1 1 1 1 1 ...
## $ sex : chr "men" "men" "men" "men" ...
## $ name : chr "Usain.Bolt" "Usain.Bolt" "Michael.Johnson" "David.Lekuta.Rudisha" ...
## $ DOB : chr "21-08-1986" "21-08-1986" "13-09-1967" "17-12-1988" ...
## $ nationality: chr "JAM" "JAM" "USA" "KEN" ...
## $ place : chr "Berlin" "Berlin" "Sevilla" "Rieti" ...
## $ date : chr "16-08-2009" "20-08-2009" "26-08-1999" "29-08-2010" ...
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Everything looks correct and we plot distance against time:

library(ggplot2)
ggplot(wr) +

geom_point(aes(x = distance, y = time, col = sex))
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This relationship would correspond to a velocity that is constant for all distances. This is clearly not realistic!
We can instead plot the logarithm of time against the logarithm of distance:

ggplot(wr) + geom_point(aes(x = distance, y = time, col = sex)) +
scale_x_log10() + scale_y_log10()
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From looking at the plot, it does seem like a decent model; the points look like they are on a line. We can
create the model and validate it:

m1 <- lm(log(time) ~ sex + log(distance) + sex:log(distance), data = wr)
par(mfrow = c(2, 2))
plot(m1)
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par(mfrow = c(1, 1))

The residuals are not mean zero and there is a clear bend in the values, i.e. the values increase until a certain
point after which point they decrease. The points where the bend occur are observations 6 and 22:

wr[c(6, 22), ]

## time distance bend sex name DOB nationality place
## 6 206.00 1500 1 men Hicham.El.Guerrouj 14-09-1974 MAR Roma
## 22 230.46 1500 1 women Yunxia.Qu 25-12-1972 CHN Beijing
## date
## 6 14-07-1998
## 22 11-09-1993

These are exactly the 1500m distances, so it seems like we have to model observations below 1500m and
above 1500m differently. We have encoded this in the bend variable that we can include in the model:

m2 <- lm(
log(time) ~ sex + log(distance) + log(bend) +

sex:log(distance) + sex:log(bend), data = wr
)
par(mfrow = c(2, 2))
plot(m2)
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par(mfrow = c(1, 1))

The plot looks much better but there are still some issues; the variance seems to change for different fitted
values and the QQ-plot also does not look that great. We refit the model without some observations:

m3 <- lm(
log(time) ~ sex + log(distance) + log(bend) +

sex:log(distance) + sex:log(bend),
data = wr[-c(1, 11, 12, 14, 15, 17, 27, 28, 30, 31), ]

)
par(mfrow = c(2, 2))
plot(m3)
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par(mfrow = c(1, 1))

This looks better! We have gotten rid of the worst of the problems with the variance and in the QQ-plot. Let
us investigate the distances that we removed:

wr[c(1, 11, 12, 14, 15, 17, 27, 28, 30, 31), ]

## time distance bend sex name DOB
## 1 9.58 100 1.00000 men Usain.Bolt 21-08-1986
## 11 2473.00 15000 10.00000 men Leonard.Patrick.Komon 10-01-1988
## 12 3386.00 20000 13.33333 men Haile.Gebrselassie 18-04-1973
## 14 4435.80 25000 16.66667 men Toshihiko.Seko 15-07-1956
## 15 5358.80 30000 20.00000 men Toshihiko.Seko 15-07-1956
## 17 10.49 100 1.00000 women Florence.Griffith-Joyner 21-12-1959
## 27 2788.00 15000 10.00000 women Tirunesh.Dibaba 01-06-1985
## 28 3926.00 20000 13.33333 women Tegla.Loroupe 09-05-1973
## 30 5225.00 25000 16.66667 women Tegla.Loroupe 09-05-1973
## 31 6350.00 30000 20.00000 women Tegla.Loroupe 09-05-1973
## nationality place date
## 1 JAM Berlin 16-08-2009
## 11 KEN Nijmegen 21-11-2010
## 12 ETH Ostrava 27-06-2007
## 14 JPN Christchurch 22-03-1981
## 15 JPN Christchurch 22-03-1981
## 17 USA Indianapolis 16-07-1988
## 27 ETH Nijmegen 15-11-2009
## 28 KEN Borgholzhausen 03-09-2000
## 30 KEN Mengerskirchen 21-09-2002
## 31 KEN Warstein 06-06-2003

We see that the excluded observations correspond to very short distances (100m) or very long distances
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(greater than 15km). It is perhaps reasonable that these are treated differently. We do model selection using
the step() function:

step(m3)

## Start: AIC=-179.6
## log(time) ~ sex + log(distance) + log(bend) + sex:log(distance) +
## sex:log(bend)
##
## Df Sum of Sq RSS AIC
## - sex:log(distance) 1 0.00015434 0.0037857 -180.69
## - sex:log(bend) 1 0.00019360 0.0038249 -180.46
## <none> 0.0036313 -179.60
##
## Step: AIC=-180.69
## log(time) ~ sex + log(distance) + log(bend) + sex:log(bend)
##
## Df Sum of Sq RSS AIC
## - sex:log(bend) 1 0.000 0.0038 -182.446
## <none> 0.0038 -180.687
## - log(distance) 1 10.016 10.0202 -9.302
##
## Step: AIC=-182.45
## log(time) ~ sex + log(distance) + log(bend)
##
## Df Sum of Sq RSS AIC
## <none> 0.0038 -182.446
## - log(bend) 1 0.0605 0.0643 -122.380
## - sex 1 0.0684 0.0722 -119.813
## - log(distance) 1 10.0164 10.0202 -11.302

##
## Call:
## lm(formula = log(time) ~ sex + log(distance) + log(bend), data = wr[-c(1,
## 11, 12, 14, 15, 17, 27, 28, 30, 31), ])
##
## Coefficients:
## (Intercept) sexwomen log(distance) log(bend)
## -3.3618 0.1115 1.1912 -0.1265

We investigate the final selected model (which only includes main effects of sex, log(bend) and
log(distance)):

m4 <- lm(log(time) ~ sex + log(distance) + log(bend),
data = wr[-c(1, 11, 12, 14, 15, 17, 27, 28, 30, 31), ]

)
par(mfrow = c(2, 2))
plot(m4)

15



3 4 5 6 7 8 9

−
0.

03
0.

01

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

21

19 6

−2 −1 0 1 2

−
1

1

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q
21

19 6

3 4 5 6 7 8 9

0.
0

0.
8

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
2119 6

0.0 0.1 0.2 0.3
−

2
0

2

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance 0.5

0.5

Residuals vs Leverage

19622

par(mfrow = c(1, 1))

The diagnostics still look okay! We can investigate whether all the remaining variables are important using
the drop1 function:

drop1(m4, test = "F")

## Single term deletions
##
## Model:
## log(time) ~ sex + log(distance) + log(bend)
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 0.0038 -182.446
## sex 1 0.0684 0.0722 -119.813 321.76 6.248e-13 ***
## log(distance) 1 10.0164 10.0202 -11.302 47107.84 < 2.2e-16 ***
## log(bend) 1 0.0605 0.0643 -122.380 284.35 1.791e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-values are tiny for all predictors and thus we conclude that all of them are important. We can give
confidence intervals for the coefficients:

cbind(estimate = coef(m4), confint(m4))

## estimate 2.5 % 97.5 %
## (Intercept) -3.3617597 -3.43932831 -3.2841911
## sexwomen 0.1115313 0.09846844 0.1245941
## log(distance) 1.1912083 1.17967773 1.2027389
## log(bend) -0.1265301 -0.14229459 -0.1107655

To get a confidence interval for the difference in the sexes, we compute the exponential of the effect of sex
and transform the confidence interval:
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exp(cbind(women_vs_men = coef(m4), confint(m4))[2, ])

## women_vs_men 2.5 % 97.5 %
## 1.117989 1.103480 1.132689

We see that women run about 11.8% slower than men. We could also have used the emmeans-package:

library(emmeans)
pairs(emmeans(m4, ~sex), type = "response", reverse = TRUE)

## contrast ratio SE df null t.ratio p.value
## women / men 1.12 0.00695 18 1 17.938 <.0001
##
## Tests are performed on the log scale

Exercise 4.3 Incomplete block experiment
Problem

The following experiment was carried out by H. Wolffhechel, KVL, in 1986. The purpose of the experiment
was to compare 12 sphagnum lots with respect to water and air content. Each lot was applied to four pots
with small cucumber plants. The pots were placed in one of six watering troughs, each containing eight pots.
The experimental design and the volume (water and air content), in percent, is given in the following table
(dataset available in file sphagnum.txt) for each pot.

Watering trough
Sphagnum lot 1 2 3 4 5 6 Mean

1 37.0 44.6 42.5 47.1 42.80
2 49.0 50.5 51.0 44.8 48.83
3 34.6 42.7 41.8 37.8 39.23
4 45.3 42.7 47.7 42.8 44.63
5 32.1 38.5 32.0 31.6 33.55
6 34.3 33.3 34.0 22.6 31.05
7 32.3 28.1 28.1 32.3 30.20
8 38.9 36.5 39.7 34.8 37.48
9 33.9 31.4 32.1 23.0 30.10
10 39.7 41.8 43.5 33.8 39.70
11 41.1 38.1 31.1 37.9 37.05
12 35.9 7.5 36.2 25.5 26.28

Construct and validate the additive model for volume, i.e. the model including only the main effects of the
two explanatory variables lot and trough:

1. Remember that the variables lot and trough should be used as factors. You can achieve this by using
the factor() function in the call to lm(). However, in this exercise it is recommended that you change
the type of the variables in the data frame at the beginning of your R code:

sphagnum <- read.delim("sphagnum.txt")
sphagnum$lot <- factor(sphagnum$lot)
sphagnum$trough <- factor(sphagnum$trough)

2. You probably want to remove the “extreme” observation volume = 7.5 for (lot, trough) = (12, 2). Can
you use the validation plots in R to identify the number of this observation?

Find the estimated marginal means of volume for the 12 different sphagnum lots using the additive model.
Why are these em-means different from the raw means listed in the above table? Do you prefer the raw
means or the em-means? Why?

Remark: The emmeans-package may be used to compute and compare the em-means. The statistical
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computations done in the emmeans-package are based on standard errors extracted from the model objects.
Suppose e.g. that your model is available in an lm-object called m2, and try the following R code (and think
about what the code does):

# load library
library(emmeans)

# Create and plot em-means
emmeans(m2, ~ lot)
plot(emmeans(m2, ~ lot))

# Tukey grouping of em-means
# Note: the p-values are adjusted for multiple testing,
# but the confidence intervals are not adjusted!
# Note: Also needs multcomp-package to be installed
# (but not necessarily loaded!)
multcomp::cld(emmeans(m2, ~ lot))

# Remark: The author of the emmeans-package, Russell Lenth,
# does not like the "compact letter display".
# Earlier there was a CLD() in the emmeans-package, but
# this functionality has been removed from the package!
# Luckily, you may use multcomp::cld() instead!

# As a replacement for the CLD() functionality Russell
# proposes the following plot. Some may find this
# display to be too busy. But what do you think?
pwpp(emmeans(m2, ~ lot))

# An alternative to pwpp() is to find and plot
# simultaneous confidence intervals.
# Note, however, that replacing hypothesis tests by
# looking for overlap between confidence intervals
# may be misleading.
confint(emmeans(m2, ~ lot),adjust="tukey")
plot(confint(emmeans(m2, ~ lot),adjust="tukey"))

Remark: An alternative is to use the multcomp package. However, the syntax for that package can be much
more difficult to learn. It is therefore recommended to use the emmeans package.

Solution

We load the data

sphagnum <- read.delim("sphagnum.txt")
sphagnum$lot <- factor(sphagnum$lot)
sphagnum$trough <- factor(sphagnum$trough)
str(sphagnum)

## 'data.frame': 48 obs. of 3 variables:
## $ lot : Factor w/ 12 levels "1","2","3","4",..: 1 1 1 1 2 2 2 2 3 3 ...
## $ trough: Factor w/ 6 levels "1","2","3","4",..: 1 3 5 6 3 4 5 6 2 3 ...
## $ volume: num 37 44.6 42.5 47.1 49 50.5 51 44.8 34.6 42.7 ...

We fit and validate the additive model:

m1 <- lm(volume ~ lot + trough, data = sphagnum)

18



par(mfrow = c(2, 2))
plot(m1)
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par(mfrow = c(1, 1))

We see that observation 46 is an outlier and investigate it:

sphagnum[46, ]

## lot trough volume
## 46 12 2 7.5

We remove this outlier (be careful about this in practice!) and refit the model:

m2 <- lm(volume ~ lot + trough, data = sphagnum[-46, ])
par(mfrow = c(2, 2))
plot(m2)
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par(mfrow = c(1, 1))

The plots all look okay! We now use obtain the desired em-means:

emmeans(m2, ~lot)

## lot emmean SE df lower.CL upper.CL
## 1 43.2 1.96 30 39.2 47.2
## 2 49.2 1.96 30 45.2 53.2
## 3 38.6 1.96 30 34.6 42.6
## 4 43.6 1.96 30 39.6 47.6
## 5 33.7 1.96 30 29.7 37.7
## 6 30.6 1.96 30 26.6 34.6
## 7 29.5 1.96 30 25.5 33.5
## 8 37.7 1.96 30 33.7 41.7
## 9 30.1 1.96 30 26.1 34.1
## 10 40.2 1.96 30 36.2 44.2
## 11 37.5 1.96 30 33.5 41.5
## 12 33.5 2.29 30 28.9 38.2
##
## Results are averaged over the levels of: trough
## Confidence level used: 0.95

plot(emmeans(m2, ~lot))
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We see that the em-means obtained here are different from the ones computed in the given table. This is
because the emmeans function chooses a balanced value for the remaining model covariates when comparing
the means in each lot. The em-means therefore give a better idea of the mean in each lot that is comparable,
since we are controlling for the effect of the watering trough.

Exercise 4.4 Linear regression
Problem

In a field experiment the concentration of phosphorus available for plant growth was measured for each
of 18 plants. Furthermore, the concentration of inorganic phosphorus was chemically determined and the
concentration of an organic phosphorus component was measured for each plant. The primary interest of the
study is to describe the concentration of phosphorus available as a function of the concentrations of inorganic
and organic phosphorus. We have the following Table of Variables:

Variable Type Usage
inorganic continuous fixed effect
organic continuous fixed effect
available continuous response

The dataset is shown below, and it is also available in the text file phosphorus.txt:
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inorganic organic available
0.4 53 64
0.4 23 60
3.1 19 71
0.6 34 61
4.7 24 54
1.7 65 77
9.4 44 81
10.1 31 93
11.6 29 93
12.6 58 51
10.9 37 76
23.1 46 96
23.1 50 77
21.6 44 93
23.1 56 95
1.9 36 54
26.8 58 168
29.9 51 99

Analyze the data, i.e. answer the generic questions:

• Is there an association?

• What is the association?

• Can the conclusions be trusted?

Hints and suggestions: If you do a multilinear regression of available on inorganic and organic, then
one of the observations is not well-modelled. You may either decide to remove this observation (what is the
easiest way to do this in R?). Alternatively, you may try a different analysis e.g. by doing a logarithmic
transformation of the response variable.

(Reference: Exercise 8.4 from Anders Tolver & Helle Sørensen: Lecture notes for Applied Statistics.)

Solution

We read the data and summarize it:

phosphor <- read.delim("phosphorus.txt")
summary(phosphor)

## inorganic organic available
## Min. : 0.40 Min. :19.00 Min. : 51.00
## 1st Qu.: 2.20 1st Qu.:31.75 1st Qu.: 61.75
## Median :10.50 Median :44.00 Median : 77.00
## Mean :11.94 Mean :42.11 Mean : 81.28
## 3rd Qu.:22.73 3rd Qu.:52.50 3rd Qu.: 93.00
## Max. :29.90 Max. :65.00 Max. :168.00

We fit a multilinear regression and validate it:

m1 <- lm(available ~ inorganic + organic, data = phosphor)
par(mfrow = c(2, 2))
plot(m1)

22



60 70 80 90 100 110

−
40

20

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

17

10 13

−2 −1 0 1 2

−
1

1
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q
17

10 13

60 70 80 90 100 110

0.
0

1.
0

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
17

10
13

0.0 0.1 0.2 0.3 0.4
−

2
0

2

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance 1

0.5

Residuals vs Leverage
17

6

10

par(mfrow = c(1, 1))

Observation 17 is an outlier. We can fit the model without this observation:

m2 <- lm(available ~ inorganic + organic, data = phosphor[-17, ])
par(mfrow = c(2, 2))
plot(m2)
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par(mfrow = c(1, 1))

This looks much better! However, it is bad practice to remove an outlier without a good reason to do so, so
we instead try a log transformation:

m3 <- lm(log(available) ~ inorganic + organic, data = phosphor)
par(mfrow = c(2, 2))
plot(m3)
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par(mfrow = c(1, 1))

This has also mitigated the problem and the model looks acceptable. We test whether there is an effect of
the covariates:

drop1(m3, test = "F")

## Single term deletions
##
## Model:
## log(available) ~ inorganic + organic
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 0.69337 -52.618
## inorganic 1 0.59109 1.28446 -43.521 12.7875 0.002758 **
## organic 1 0.00005 0.69342 -54.617 0.0011 0.974301
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It seems that organic is not important; we refit the model without this variable, validate it and check for an
effect of inorganic:

m4 <- lm(log(available) ~ inorganic, data = phosphor)
par(mfrow = c(2, 2))
plot(m4)
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par(mfrow = c(1, 1))
drop1(m4, test = "F")

## Single term deletions
##
## Model:
## log(available) ~ inorganic
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 0.69342 -54.617
## inorganic 1 0.75748 1.45090 -43.327 17.478 0.0007065 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model still looks okay and we see that inorganic is highly significant with a p-value of around 0.0007.
We can construct a confidence interval for coefficients:

cbind(estimate = coef(m4), confint(m4))

## estimate 2.5 % 97.5 %
## (Intercept) 4.10639987 3.9430857 4.26971405
## inorganic 0.02078734 0.0102467 0.03132798

Since we are modelling on a logarithmic scale, it is useful to backtransform the coefficient for inorganic:

exp(c(exp = coef(m4)[2], confint(m4)[2, ]))

## exp.inorganic 2.5 % 97.5 %
## 1.021005 1.010299 1.031824

An increase of 1 inorganic phosphorus will increase the available phosphorus by 2.1%.
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