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Exercise 5.1 Hypertension in diabetic patients
Problem

In this exercise we will analyze the dataset from Exercise 1.5 using an ANCOVA with a random effect. This
is an alternative to the four ¢-tests done in Exercise 1.5 (two of these tests did the comparison of the two
drugs, and gave the p-values 0.0932 and 0.1108). But first let us recap the description of the dataset:

An experiment on 19 diabetic patients was conducted in order to compare the effects of two drugs called Drug
E and Drug N on the treatment of high blood pressure. The study is a cross-over study which means that all
patients try both drugs in two different study periods. Both study periods lasted for 14 days. In between the
two study periods was a wash-out period, which also lasted for 14 days. The patients were randomly assigned
to two groups called E/N and N/E. The patients in the E/N-group received drug E in the first study period
and drug N in the second study period. The patients in the N/E-group received drug N in the first study
period and drug E in the second study period.

The systolic and the diastolic blood pressure was measured for all the patients at the beginning and the
end of both study periods. In this exercise we will analyze the change of the systolic blood pressure. These
observations are available in the text file hypertension.txt in long form, i.e. with one response measurement
in each row. This dataset contains the following variables:

Variable Type Range Usage
drug nominal E, N 77
period nominal 1,2 77
order nominal E/N, N/E 77
patient nominal 8,...,26 77
baseline continuous [107;156] 77
end continuous  [91; 154] 7
change continuous  [—25; 25| 77



Please answer the following 5 questions:
1. In the table above replace the “??”s by either “fixed effect”, “random effect”, “response”, or “not used”.

2. In Exercise 1.5 two of the t-tests were done to see if there was an effect of order or an interaction
between period and drug. For the cross-over study design to be successful neither of these should be
significant. To investigate these potential problems in an ANOVA model we would incorporate the
main effect of order and the interaction period:drug in the model. Hence a model with the following
design diagram?:
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Inspecting the design diagram we see that the interaction period:drug has zero degrees of freedom.
This means that this interaction does not contribute to the model at all. Can you explain why? In
other words, why does it not make sense to include both the main effect of order and the interaction
period:drug at the same time?

Hint: What is the relation between period:drug and order?
3. Analyze the dataset. Possibly also using baseline as a fixed effect.

Hint: If you want to include baseline in the model you simply add it to the right hand side of the “~”
in the model equation. Furthermore, remember that period and patient should be used as categorical
factors in the model.

4. Ts this analysis more powerful than the analysis done in Exercise 1.57

5. In your opinion is this analysis more easy to communicate compared to the analysis done in Exercise
1.57

(Reference: Bradstreet, T.E. (1994) “Favorite Data Sets from Early Phases of Drug Research - Part 3.7
Proceedings of the Section on Statistical Education of the American Statistical Association.)

1In this design diagram the area of the green circles visualizes the proportion of total variance explained by the different
terms in the model.



Systolic blood pressure
Patient id | Treatment order Baseline 1 End 1 Baseline 2 End 2
9 Drug E, Drug N 124 136 120 145
21 Drug E, Drug N 120 132 138 126
8 Drug E, Drug N 115 96 111 91
12 Drug E, Drug N 134 118 123 123
16 Drug E, Drug N 131 106 111 123
19 Drug E, Drug N 119 108 113 112
20 Drug E, Drug N 124 112 108 112
24 Drug E, Drug N 127 113 121 143
13 Drug N, Drug E 113 113 107 97
17 Drug N, Drug E 132 109 122 119
18 Drug N, Drug E 129 133 139 130
23 Drug N, Drug E 124 120 127 118
25 Drug N, Drug E 112 103 112 121
10 Drug N, Drug E 124 112 128 122
11 Drug N, Drug E 144 154 156 137
14 Drug N, Drug E 134 118 122 109
15 Drug N, Drug E 119 118 115 114
22 Drug N, Drug E 123 123 114 108
26 Drug N, Drug E 122 123 124 120

Table 1: Treatment of hypertension in diabetic patients. Here the dataset is given in wide form, where all
observations from each patient are inside a single row.

Solution
We first load the data and encode variables as factors:

hypertension <- read.delim("hypertension.txt")
hypertension$patient <- factor (hypertension$patient)
hypertension$period <- factor(hypertension$period)

We add the uses of the different variables to the table:

Variable Type Range Usage
drug nominal E, N fixed
period nominal 1,2 fixed
order nominal E/N, N/E fixed
patient nominal 8,...,26 random
baseline continuous [107;156] fixed

[
end continuous  [91;154] not used
change continuous  [—25; 25] response

The interpretation of period:drug as a modification of drug is that the difference between drug E and
drug N, i.e. E-N, may depend on the period. In period 1 we have the difference diff1 = mean(1, E) -
mean(1, N) and in period 2 we have difference diff2 = mean(2, E) - mean(2, N). Thus, the interaction
period:drug models the difference of differences. That is,

diffl - diff2 = (mean(1, E) - mean(1l, N)) - (mean(2, E) - mean(2, N))
= (mean(1, E) + mean(2, N)) - (mean(l, N) + mean(2, E))

But this is exactly that same contrast that is modeled by order. In other words, The patients in the E/N
group only experience the two drugs in a situation where you might have synergistic (or antagonistic) effect
between period=1 and drug=FE and between period=2 and drug=N. The patients in the N/E group only
experience the two drugs in a situation where you might have synergistic (or antagonistic) effect between
period=1 and drug=N, and between period=2 and drug=E.

To analyze the data, we fit a linear mixed model with main effect of baseline, order, period and drug and
a random effet of patient.

library(1lme4)

ml <- lmer(
change ~ baseline + order + period + drug + (1 | patient),
data = hypertension



)

We create validation plots:

plot(m1)
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All of the plots look okay, so the model is reasonable. We check if there is an effect of treatment:

dropl(ml, test = "Chisq")



## boundary (singular) fit: see help('isSingular')

## Warning in optwrap(optimizer, devfun, x@theta, lower = xQ@lower, calc.derivs =
## TRUE, : convergence code 3 from bobyqa: bobyga -- a trust region step failed to
## reduce q

## Single term deletions

##

## Model:

## change ~ baseline + order + period + drug + (1 | patient)
## npar AIC LRT Pr(Chi)

## <none> 300.81

## baseline 1 300.89 2.0705 0.15017

## order 1 299.02 0.2032 0.65212

## period 1 300.60 1.7836 0.18171

## drug 1 302.66 3.8433 0.04995 *

## ——-

## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

drug is indeed significant with a p-value of 0.04995 (however this is very weak evidence). We can compute
em-means to determine the size of the effect:

library (emmeans)
emmeans (m1, ~drug)

## drug emmean SE df lower.CL upper.CL

## E -7.46 2.66 31.7 -12.88 -2.04
## N -0.90 2.67 31.7 -6.34 4.54
##

## Results are averaged over the levels of: order, period
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95

test (emmeans (m1, ~drug))

## drug emmean SE df t.ratio p.value

## E -7.46 2.66 31.7 -2.807 0.0085
# N -0.90 2.67 31.7 -0.337 0.7381
##

## Results are averaged over the levels of: order, period
## Degrees-of-freedom method: kenward-roger

confint (pairs(emmeans(ml, ~drug)))

## contrast estimate SE df lower.CL upper.CL

# E - N -6.56 3.43 17.1 -13.8 0.673

##

## Results are averaged over the levels of: order, period
## Degrees-of-freedom method: kenward-roger

## Confidence level used: 0.95

It looks as if drug E lowers the blood pressure, whereas drug N does not appear to have any effect.

We were able to establish a significant (p = 0.04995) difference between drug E and N whereas the ¢-test
done in Exercise 1.5 was not able to establish a significant difference (p = 0.0932). In this way the ANCOVA
analysis is more powerful. The reason for this is, that model m1 also controls for the baseline as well as the
period.

However, if we would have done model selection before the hypothesis tests then we get the following result



dropl(ml, test = "Chisq")
## boundary (singular) fit: see help('isSingular')

## Warning in optwrap(optimizer, devfun, x@theta, lower = x@lower, calc.derivs =
## TRUE, : convergence code 3 from bobyqga: bobygqa -- a trust region step failed to
## reduce q

## Single term deletions

##

## Model:

## change ~ baseline + order + period + drug + (1 | patient)
## npar AIC LRT Pr(Chi)

## <none> 300.81

## baseline 1 300.89 2.0705 0.15017

## order 1 299.02 0.2032 0.65212

## period 1 300.60 1.7836 0.18171

## drug 1 302.66 3.8433 0.04995 *

## —-—-

## Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
m2 <- update(ml, . ~ . - order)

dropl(m2, test = "Chisq")
## boundary (singular) fit: see help('isSingular')

## Single term deletions

##

## Model:

## change ~ baseline + period + drug + (1 | patient)
## npar AIC LRT Pr(Chi)

## <none> 299.02

## baseline 1 299.51 2.4871 0.11478

## period 1 298.76 1.7459 0.18640

## drug 1 300.86 3.8438 0.04993 *

## ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
m3 <- update(m2, . ~ . - period)

dropl(m3, test = "Chisq")
## boundary (singular) fit: see help('isSingular')

## Single term deletions

##

## Model:

## change ~ baseline + drug + (1 | patient)

## npar AIC LRT Pr(Chi)

## <none> 298.76

## baseline 1 299.77 3.0087 0.08282 .

## drug 1 299.73 2.9663 0.08502 .

## ——-

## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Thus, model selection will remove both order and period (eg. looking at the AIC value or p-value). Then
we get model m3, where the effect of drug is non-significant (p = 0.08502). This p-value is comparable to
what we found using ¢-tests (which gave p = 0.0932). The conclusion thus depends on whether we do model
selection or not, so it is very delicate!



The ANCOVA model m1 proposed above is somewhat complicated, however, only one model needs to be
described and understood. On the other hand the 4 ¢-tests done in Exercise 1.5 are more simple by themselves
but if all details are to be given, then it requires a lot of explanation. The ANCOVA model could be preferred
for these reasons; here all effects can be explained and understood in a single model.

Exercise 5.2 Random effects model
Problem

In an experiment about production of milk powder two factors were varied: water activity on three levels
(water=1, 2, 3) and temperature while drying on 4 levels (temp=100, 110, 120, 140 degrees Celsius). Only 9
of the 12 combinations were tested in the experiment. There were three replications in the experiment, in
the sense that milk powder was prepared in three rounds (round=1, 2, 3). This gives 3 - 9 = 27 samples of
milk powder in total. Each of these were stored and measurements were taken after 4, 6 and 8 weeks. Each
time the concentration of maillard reaction products as well as a sensory taste score (high values means good
taste) were measured. The dataset consists of 81 observations, which are listed in Table~2 and can be found
in the text file milk.txt. In this exercise we will analyze the response maillard.

The factor round can be considered a block factor, and should be used as a random factor in this exercise?.

The 3-way interaction round:water:temp corresponds to the grouping of the 81 observations into the 27
different samples. Since the samples are measured 3 times (i.e. repeated measurements) it is also standard to
make this 3-way interaction a random factor. Thus, the design diagram for the experiment is as follows:

[round:water:temp] ?Z [round] ;

T

Water:tempg - temp§

— N

[I]gé - Week:water:tempz7 — Week:tempé2 waters —> 11

9

week:waters ’

3
weeka

Recall, that the superscripts designate the number of levels, and that the subscripts designate the corresponding
degrees of freedom. Please have a closer look at the design diagram, which contains the random effects of
round:water:temp and of round, and the full factorial design of the fixed effects temp, water and week.
Can you see how it relates to the description of the experiment given above?

The model described above is fitted in R using the following call to lmer():3

lmer (maillard ~ week * water * temp + (1 | round:water:temp) + (1 | round), data=milk)

Here we assume that the data is available in a data frame called milk, where the explanatory variables are
encoded as factors.

Now analyze the relation between maillard and the 3 explanatory factors using the following 4 steps:
1. Fit the initial model using lmer ().

2. Validate the initial model as proposed in the lectures.

2This violates the “rule of thumb” that factors with less than 5 levels can be used with fixed effect. However, this is also a
matter of preference. Moreover, using round as a random effect also let you try a model with more than one random effect.

3If your version of lme4 is older than 1.1-6, then this call might result in an error message like this "Error
in 1lme4::1Formula(formula = maillard ~ week * water * temp + (1 | : rank of X = 27 < ncol(X) = 36". If you en-
counter this error message, then you should update your installation of the lme4-package.



Round Week Maillard Taste Water Temp Round Week Maillard Taste ‘Water Temp
1 4 2.90 10.1 1 100 2 6 2.11 11.2 3 100
1 4 2.13 11.0 1 110 2 6 1.98 11.8 3 110
1 4 2.00 11.1 1 120 2 6 2.20 11.0 3 140
1 4 2.13 11.1 2 100 3 6 2.20 7.0 1 100
1 4 2.38 11.9 2 120 3 6 2.34 10.7 1 110
1 4 2.56 10.7 2 140 3 6 2.49 10.3 1 120
1 4 2.60 10.8 3 100 3 6 2.63 9.7 2 100
1 4 1.91 11.0 3 110 3 6 3.06 9.0 2 120
1 4 2.27 10.8 3 140 3 6 3.28 9.6 2 140
2 4 2.19 11.0 1 100 3 6 2.34 10.2 3 100
2 4 2.32 11.0 1 110 3 6 2.51 9.2 3 110
2 4 2.41 11.6 1 120 3 6 2.77 10.2 3 140
2 4 2.49 11.1 2 100 1 8 2.39 9.6 1 100
2 4 2.61 11.7 2 120 1 8 2.41 9.8 1 110
2 4 2.63 10.8 2 140 1 8 2.71 11.4 1 120
2 4 2.06 11.0 3 100 1 8 2.49 11.2 2 100
2 4 1.98 10.0 3 110 1 8 2.06 11.2 2 120
2 4 2.27 11.2 3 140 1 8 3.10 9.8 2 140
3 4 2.13 10.1 1 100 1 8 2.32 10.8 3 100
3 4 2.13 9.4 1 110 1 8 2.29 9.4 3 110
3 4 2.22 10.7 1 120 1 8 2.72 12.0 3 140
3 4 2.80 8.3 2 100 2 8 2.27 11.0 1 100
3 4 2.77 10.9 2 120 2 8 2.25 11.2 1 110
3 4 2.99 9.2 2 140 2 8 2.46 9.6 1 120
3 4 1.98 10.3 3 100 2 8 2.53 9.2 2 100
3 4 1.98 9.3 3 110 2 8 2.70 11.0 2 120
3 4 2.20 10.5 3 140 2 8 2.81 11.6 2 140
1 6 2.13 10.0 1 100 2 8 2.20 11.8 3 100
1 6 2.34 10.5 1 110 2 8 2.15 10.6 3 110
1 6 2.49 11.2 1 120 2 8 2.41 11.4 3 140
1 6 2.41 10.8 2 100 3 8 2.41 9.6 1 100
1 6 2.85 11.2 2 120 3 8 2.42 9.0 1 110
1 6 2.84 11.2 2 140 3 8 2.73 10.2 1 120
1 6 2.24 8.4 3 100 3 8 3.33 7.8 2 100
1 6 2.06 11.4 3 110 3 8 3.25 9.4 2 120
1 6 2.42 11.6 3 140 3 8 3.75 9.6 2 140
2 6 2.20 9.3 1 100 3 8 2.80 10.6 3 100
2 6 2.27 11.3 1 110 3 8 2.81 10.2 3 110
2 6 2.49 11.7 1 120 3 8 3.06 10.0 3 140
2 6 2.34 11.2 2 100
2 6 2.70 10.8 2 120
2 6 2.61 11.0 2 140

Table 2: The milk powder data

3. Do backward model reduction of the fixed effects using drop1(.,test="Chisq") and update() as
exemplified in the lectures.

4. Report em-means for the final model.

(Reference: Exercise 8.7 in Sgrensen & Tolver: Lecture Notes for Applied Statistics.)

Solution
We load the data, encode variables as factors and fit the initial model:

milk <- read.delim("milk.txt")

milk$round <- factor (milk$round)
milk$week <- factor(milk$week)
milk$water <- factor(milk$water)
milk$temp <- factor(milk$temp)

library(1lme4)

m0 <- lmer(
maillard ~ week * water * temp + (1 | round:water:temp) + (1 | round),
data = milk

)

## fixed-effect model matrix is rank deficient so dropping 9 columns / coefficients
We create validation plots:

plot (m0)
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Residual plot does not look too nice, so we would like to try a Box-Cox analysis. However, MASS: :boxcox ()
does not work on lmer-models. We instead do the Box-Cox analysis on the corresponding 1m-model without
the random effects

11



library(MASS)

boxcox(lm(maillard ~ week * water * temp, data = milk),
lambda = seq(-3, 2, 0.1)

)

log-Likelihood

-3 -2 -1 0 1 2

A Box-
Cox suggests that we analyze 1/(maillard?®) (but 1/maillard also looks reasonable and perhaps even a log
transform could work). We fit a new model and validate it:

ml <- lmer(
1 / maillard™2 ~ week * water * temp + (1 | round:water:temp) + (1 | round),

data = milk
)

## fixed-effect model matrix is rank deficient so dropping 9 columns / coefficients

plot(m1)

12



o)
o)
0.05 — -
_ o)
< o)
§ o)
§ o @O%O 7 o
o} O 0p0 o}
" .00 H—o -2
s © o 0 o0 @ Q O O
P ) O ®) O (@)
r 9 cf) ) o © O
5 o Ooo 5
3 © o
o) o)
-0.05 | -
o o}
[ [ [ [
0.10 0.15 0.20 0.25
fitted(.)

qgnorm(residuals(ml))

Normal Q—-Q Plot

© o
o o)
(@]
n Oo
z 9
+— —]
g o
>
(@4 _
@
AN
£ o _
o o
n |
(o]
o |
o o) o
' I I I I I
-2 -1 0 1 2

Theoretical Quantiles

qgnorm(ranef (m1)$"round:water:temp" [, 1])

13




Normal Q—-Q Plot
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Unfortunately, this model does not look much better than the one we started with so we will proceed with
the original model m0. We perform backwards model selection:

dropl1(m0, test = "Chisq")

14



##

##
##
##
##
##
##
##
##

m2
##

fixed-effect model matrix is rank deficient

Single term deletions

Model:
maillard ~ week * water * temp + (1 | round:
round)
npar AIC LRT Pr(Chi)
<none> 27.728

week:water:temp 6 23.299 7.5718 0.2712

<- update(mO, . ~ . - week:water:temp)

fixed-effect model matrix is rank deficient

dropl(m2, test = "Chisq")

##
##

##
##
##
##
##
##
##
##
##
##

m3
##

dropl(m3, test =

##

##
##
##
##
##
##
##
##
##
##
##

m4

dropl(m4, test =

##
##
##

is rank deficient
is rank deficient

fixed-effect model matrix
fixed-effect model matrix

Single term deletions

Model:

maillard ~ week + water + temp + (1 | round
round) + week:water + week:temp + water:

npar AIC LRT Pr(Chi)

<none> 23.299

week:water 4 17.102 1.8022 0.7721

week:temp 6 21.815 10.5154 0.1046

water:temp 3 18.890 1.5909 0.6615

<- update(m2, . ~ - week:water)
fixed-effect model matrix is rank deficient
"Chisq")

fixed-effect model matrix is rank deficient
Single term deletions

Model:
maillard ~ week + water + temp + (1 | round

round) + week:temp + water:temp
npar AIC LRT Pr(Chi)
<none> 17.102
week:temp 6 16.322 11.2203 0.0818 .

water:temp 3 12.693 1.5909 0.6615

Signif. codes: O 'x*x' 0.001 'xx' 0.01 '=x'

<- update(m3, . ~ . - water:temp)

"ChiSq")

Single term deletions

Model:

so dropping 3

water:temp) +

so dropping 3

so dropping 3
so dropping 3

:water:temp) +

temp

so dropping 3

so dropping 3

:water:temp) +

0.05 '.' 0.1

columns / coefficients

1|

columns / coefficients

columns / coefficients
columns / coefficients

1|

columns / coefficients

columns / coefficients

1|

"1

## maillard ~ week + water + temp + (1 | round:water:temp) + (1 |

##

round) + week:temp
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## npar AIC LRT Pr(Chi)

## <none> 12.693

## water 2 27.687 18.994 7.506e-05 *xxx

## week:temp 6 11.913 11.220 0.0818 .

## -—-

## Signif. codes: O '**x' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
m5 <- update(m4, . ~ . - week:temp)

dropl(m5, test = "Chisq")

## Single term deletions

##

## Model:

## maillard ~ week + water + temp + (1 | round:water:temp) + (1 |
#it round)

## npar AIC LRT Pr(Chi)

## <none> 11.913

## week 2 29.283 21.370 2.289e-05 **x*

## water 2 26.907 18.994 7.506e-05 **x

## temp 3 19.697 13.784 0.003215 *x*

## ——-

## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

All three main effects are highly significant (both by AIC and p-values). We compute em-means for each of
the factors. First for week:

emmeans (m5, ~week)

## week emmean SE  df lower.CL upper.CL

#t 4 2.34 0.094 2.64 2.02 2.67
# 6 2.47 0.094 2.64 2.14 2.79
## 8 2.63 0.094 2.64 2.31 2.96
##

## Results are averaged over the levels of: water, temp
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95

multcomp: :cld(emmeans (m5, ~week), Letters = letters)

## week emmean SE df lower.CL upper.CL .group

## 4 2.34 0.094 2.64 2.02 2.67 a
## 6 2.47 0.094 2.64 2.14 2.79 a
## 8 2.63 0.094 2.64 2.31 2.96 b
##

## Results are averaged over the levels of: water, temp

## Degrees-of-freedom method: kenward-roger

## Confidence level used: 0.95

## P value adjustment: tukey method for comparing a family of 3 estimates
## significance level used: alpha = 0.05

## NOTE: If two or more means share the same grouping symbol,

#it then we cannot show them to be different.

#it But we also did not show them to be the same.

pairs(emmeans(m5, ~week))

## contrast estimate SE df t.ratio p.value
## week4 - week6 -0.121 0.0578 52 -2.090 0.1018

16



## week4 - week8 -0.289 0.0578 52 -4.994 <.0001

## week6 - week8 -0.168 0.0578 52 -2.904 0.0147

#i#

## Results are averaged over the levels of: water, temp

## Degrees-of-freedom method: kenward-roger

## P value adjustment: tukey method for comparing a family of 3 estimates

plot (emmeans (m5, ~week))

8 °
X
O 6 .
=
4 °
2.00 2.25 2.50 2.75 3.0C
emmean

We see that although confidence intervals are overlapping for the different weeks, we still obtain a significant
result in the pairwise comparison. The reason for this is that the confidence intervals for the em-means
themselves also includes the uncertainty on the estimation of the remaining factors. These, however, disappear
in the pairwise comparisons within week. We do the same for water:

emmeans (m5, ~water)

## water emmean SE df lower.CL upper.CL
## 1 2.42 0.0997 3.3 2.12 2.72
# 2 2.70 0.0997 3.3 2.40 3.00
## 3 2.33 0.0997 3.3 2.02 2.63
##

## Results are averaged over the levels of: week, temp
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95

multcomp: :cld (emmeans (m5, ~water), Letters = letters)

## water emmean SE df lower.CL upper.CL .group
## 3 2.33 0.0997 3.3 2.02 2.63 a
## 1 2.42 0.0997 3.3 2.12 2.72 a

17



## 2 2.70 0.0997 3.3 2.40 3.00 b

##

## Results are averaged over the levels of: week, temp

## Degrees-of-freedom method: kenward-roger

## Confidence level used: 0.95

## P value adjustment: tukey method for comparing a family of 3 estimates
## significance level used: alpha = 0.05

## NOTE: If two or more means share the same grouping symbol,

#i# then we cannot show them to be different.

#i#t But we also did not show them to be the same.

pairs(emmeans(m5, ~water))

## contrast estimate SE df t.ratio p.value

## waterl - water2 -0.2829 0.0814 19 -3.474 0.0068

## waterl - water3d 0.0909 0.0814 19 1.116 0.5161

## water2 - water3d 0.3738 0.0814 19 4.590 0.0006

##

## Results are averaged over the levels of: week, temp

## Degrees-of-freedom method: kenward-roger

## P value adjustment: tukey method for comparing a family of 3 estimates

plot(emmeans(m5, ~water))

water
N
°

2.00 2.25 2.50 2.75 3.00
emmean

A similar pattern emerges where clearly group 2 is different from 1 and 3 but their confidence intervals are
overlapping. Finally for temp:

emmeans (m5, ~temp)

## temp emmean SE  df lower.CL upper.CL
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##
##
##
##
##

100
110
120
140

## Results are averaged over the levels of: week, water
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95

multcomp: :cld (emmeans (m5, ~temp), Letters

##
##
##
##
##
##
##
##
##
##
##
##
##
##

temp emmean
2.35 0.1071 4.33
2.39 0.0977 3.05
2.50 0.1071 4.33
2.68 0.1071 4.33

110
100
120
140

SE

df lower.CL upper.CL
2.64
2.70
2.79

2.06
2.09
2.21
2.40

letters)

a
a
a

2.97

.group

b
b

Results are averaged over the levels of: week, water
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95

P value adjustment: tukey method for comparing a family of 4 estimates
significance level used: alpha =
NOTE: If two or more means share the same grouping symbol,

0.

05

then we cannot show them to be different.
But we also did not show them to be the same.

pairs(emmeans (m5, ~temp))

##
##
##
##
##
##
##
##
##
##
##

contrast
templ100
temp100
temp100
templ110
templ10
templ120

templ10
temp120
temp140
temp120
temp140
temp140

estimate

0.0461
.1059
.2908
.1520
.3369
.1849

O O O O OO

SE
.0864
.0864
.0864
.0997
.0997
.0997

df t.ratio p.value
0.534

19
19
19
19
19
19

.226
.367
.524
.378
.854

O O O O OO

. 9497
.6186
.0157
.4434
.01563
.2803

Results are averaged over the levels of: week, water
Degrees-of-freedom method: kenward-roger

P value adjustment: tukey method for comparing a family of 4 estimates

plot (emmeans (m5, ~temp))
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We see that temperature 140 is different from both 100 and 110 but 120 is similar to either group.

Exercise 5.3 Logistic regression with overdispersion

Problem

20 individuals have participated in an experiment where two different diets are to be compared. By
randomization 10 people have been assigned to each diet and every week a weight gain or weight loss has
been observed. The observations are the number of weeks where the diet resulted in a weight loss for each of
the 20 individuals in the experiment. The table below displays the results for a period of eight weeks showing
the number of people for each combination of diet and weeks with weight loss:

No. of weeks with weight loss |0 1 2 3 4 5 6 7 8
Diet 1 10 2 01 1 2 0 3
Diet 2 2 1 0 1 2 1 2 1 0
The dataset available in the text file diet.txt table contains four variables:

Variable Range  Usage

person 20 levels random effect

diet 1,2 fixed effect

gain 0,...,8 response

loss 0,...,8 response

Fit a logistic regression to the dataset and answer the following questions:

e Is there an indication of overdispersion?

o What is the p-value for the effect of diet on the probability of weight loss in each week?

e What is the odds ratio for weight loss between the two diets? Please answer this question even if the

effect of diet is non-significant.
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Above you should find strong evidence for overdispersion. Actually this is visible by the naked eye when
looking at the data table (if you know what to look for).

(Reference: Exercise 8.20 in Sgrensen & Jensen: Lecture Notes for Applied Statistics.)

Solution
We load the data and encode factors:

diet <- read.delim("diet.txt")
diet$person <- factor(diet$person)
diet$diet <- factor(diet$diet)

We start by fitting a logistic mixed model:

ml <- glmer(
cbind(loss, gain) ~ diet + (1 | person),
family = binomial,
data = diet

)

The model cannot be misspecifed in the mean but we still need to check for normality of the random effects:

qqnorm(ranef (m1)$person[, 1])

Normal Q—-Q Plot
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Theoretical Quantiles

This looks okay. To check for overdispersion, we compare to a logistic regression model without the random
effect:

m0 <- glm(cbind(loss, gain) ~ diet, family = binomial, data = diet)

anova(ml, m0)

## Data: diet

## Models:
## m0: cbind(loss, gain) ~ diet
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## ml: cbind(loss, gain) ~ diet + (1 | person)

#i#t npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

## mO 2 122.974 124.965 -59.487 118.974

## ml 3 93.149 96.136 -43.574 87.149 31.825 1 1.687e-08 *xx
## ——-

## Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

We cannot go from m1 to m0 (p ~ 1078) so this indicates that overdispersion is present. We can test whether
there is an effect of diet:

dropl(ml, test = "Chisq")

## Single term deletions

##

## Model:

## cbind(loss, gain) ~ diet + (1 | person)
## npar AIC LRT Pr(Chi)

## <none> 93.149

## diet 1 92.762 1.6137 0.204

We see no evidence that there is an effect of diet. We can estimate the odds ratio using em-means:

confint (pairs(emmeans(ml, ~diet, type = "response")))

## contrast odds.ratio SE df asymp.LCL asymp.UCL
## dietl / diet2 3.18 2.89 Inf 0.535 18.9
##

## Confidence level used: 0.95
## Intervals are back-transformed from the log odds ratio scale

Thus, the odds for weight loss is estimated to be higher in diet 1, although the odds ratio is not significantly
different from 1 as seen above.
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