
Exercises for Day 6 – Solution
Applied Statistics & Statistical methods for SCIENCE

Anton Rask Lundborg

January 2024

Exercise 6.1 Causal inference using an instrumental variable
Problem

The purpose of this exercise is to try the two-step procedure using an instrumental variable. In order to know
the true value of the parameters we simulate a dataset from the following model:

C

0.5

~~

1

��
Z

0.5 // X
2 // Y

Here the regression coefficients are written above the arrows. Furthermore, normal errors with unit standard
deviation are added to all variables. Simulating N = 100 samples from this model may be done via the R
code:

N <- 100
C <- rnorm(N)
Z <- rnorm(N)
X <- 0.5 * Z + 0.5 * C + rnorm(N)
Y <- 2 * X + C + rnorm(N)

We wish to recover the causal effect of X on Y (i.e. the coefficient 2) from the dataset, where only Z, X and
Y are available. Thus, the confounder C is not available, but we have the instrumental variable Z at our
disposal. Answer the following questions:

• Simulate the dataset in R using the above code.

• Fit a simple linear regression of Y on X. Do you recover the coefficient 2 from this regression? Why
not? Why is the estimate biased to return too large a value?

• Implement the two-step procedure described on lecture slide 17 (Day 6). Hint: To find the predicted
values for X given the instrumental variable Z you may use the code

hatX <- predict(lm(X ~ Z))

• Do you recover the coefficient 2 from the two-step procedure? Is this still true if you simulate a new
dataset several times?

• Try to see if you can recover the coefficient 2 when the sample size equals N = 10000. What does this
say about the power of the two-step procedure?

• Now assume that the confounder C is available. Can you recover the true causal effect of X on Y from
N = 100 observations?

1

Solution

We simulate the data and fit a linear regression:

N <- 100
C <- rnorm(N)
Z <- rnorm(N)
X <- 0.5 * Z + 0.5 * C + rnorm(N)
Y <- 2 * X + C + rnorm(N)

m <- lm(Y ~ X)
summary(m)

##
Call:
lm(formula = Y ~ X)
##
Residuals:
Min 1Q Median 3Q Max
-4.3241 -0.6852 0.0620 0.8809 2.7435
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.009202 0.126330 0.073 0.942
X 2.228157 0.105461 21.128 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.261 on 98 degrees of freedom
Multiple R-squared: 0.82, Adjusted R-squared: 0.8181
F-statistic: 446.4 on 1 and 98 DF, p-value: < 2.2e-16

We see that the coefficient is estimated incorrectly. We can repeat the experiment 1000 times to get an idea
of whether we were unlucky or whether there is a consistent bias in the estimation:

reps <- 1000
beta <- numeric(reps)
for (i in 1:reps) {

N <- 100
C <- rnorm(N)
Z <- rnorm(N)
X <- 0.5 * Z + 0.5 * C + rnorm(N)
Y <- 2 * X + C + rnorm(N)

m <- lm(Y ~ X)
beta[i] <- coef(m)[2]

}
mean(beta)

[1] 2.330342

The average value of the coefficient is significantly larger than 2. The value is too large since part of C is
included in both the specification of X and of Y but we do not account for this. We repeat the experiment
with the two-step procedure instead:

reps <- 1000
beta <- numeric(reps)
for (i in 1:reps) {

2

N <- 100
C <- rnorm(N)
Z <- rnorm(N)
X <- 0.5 * Z + 0.5 * C + rnorm(N)
Y <- 2 * X + C + rnorm(N)

hat_X <- predict(lm(X ~ Z))
m <- lm(Y ~ hat_X)
beta[i] <- coef(m)[2]

}
mean(beta)

[1] 1.989348

We see that on average we get a value much closer to 2 than before, however, now we slightly underestimate
the effect on average. We can up the sample size to 10000:

reps <- 1000
beta <- numeric(reps)
for (i in 1:reps) {

N <- 10000
C <- rnorm(N)
Z <- rnorm(N)
X <- 0.5 * Z + 0.5 * C + rnorm(N)
Y <- 2 * X + C + rnorm(N)

hat_X <- predict(lm(X ~ Z))
m <- lm(Y ~ hat_X)
beta[i] <- coef(m)[2]

}
mean(beta)

[1] 1.998384

We now obtain the correct value on average. Using the confounder, we can obtain the value already with a
sample size of 100:

reps <- 1000
beta <- numeric(reps)
for (i in 1:reps) {

N <- 100
C <- rnorm(N)
Z <- rnorm(N)
X <- 0.5 * Z + 0.5 * C + rnorm(N)
Y <- 2 * X + C + rnorm(N)

m <- lm(Y ~ X + C)
beta[i] <- coef(m)[2]

}
mean(beta)

[1] 2.002647

3

Exercise 6.2 Latin square
Problem

The effect of insulin on the blood concentration of glucose was studied on rabbits. Three rabbits received
insulin doses A, B and C (corresponding to respectively 0, 1 and 2 units) on different days. The experiment
is given below (dataset available in file rabbit.txt) with the glucose measurements (mg pr. 100 ml blood)
taken 50 minutes after injection.

Rabbit
Day 1 2 3
1 A 50 C 39 B 36
2 C 37 B 51 A 53
3 B 51 A 60 C 37

Make the Table of Variables, set up the associated statistical model, and analyse the data. Remember to
obtain estimates of effects of interest.

Why is it not possible to investigate whether there is an interaction between rabbit and dose based on these
data?

(Data are from Young & Romans (1948): Assay of insulin with one blood sample per rabbit per day.
Biometrics, 4, 122–131.)

Solution

We load the data:

rabbit <- read.delim("rabbit.txt")
rabbit$day <- factor(rabbit$day)
rabbit$rabbit <- factor(rabbit$rabbit)
summary(rabbit)

day rabbit dose glucose
1:3 1:3 Length:9 Min. :36
2:3 2:3 Class :character 1st Qu.:37
3:3 3:3 Mode :character Median :50
Mean :46
3rd Qu.:51
Max. :60

We create and validate a model:

m <- lm(glucose ~ day + rabbit + dose, data = rabbit)
par(mfrow = c(2, 2))
plot(m)

4

40 45 50 55 60

−
2

0
2

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

2 67

−1.5 −0.5 0.5 1.0 1.5

−
1.

0
0.

5

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q
276

40 45 50 55 60

0.
0

0.
6

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
2 7 6

−
1.

5
0.

0
1.

5

Factor Level Combinations

S
ta

nd
ar

di
ze

d
re

si
du

al
s

1 2 3
day :

Constant Leverage:
 Residuals vs Factor Levels

2 7

3

par(mfrow = c(1, 1))

It is exceedingly difficult to tell whether this model is valid from the small number of data points but certainly
normality looks borderline. We will continue anyway! Is there an effect of dose?

drop1(m, test = "F")

Single term deletions
##
Model:
glucose ~ day + rabbit + dose
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 16.67 19.546
day 2 92.67 109.33 32.475 5.56 0.15244
rabbit 2 96.00 112.67 32.745 5.76 0.14793
dose 2 416.67 433.33 44.869 25.00 0.03846 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Yes, dose is significant (p = 0.03846). We can compare the average values within each dose using emmeans:

library(emmeans)
multcomp::cld(emmeans(m, ~dose), Letters = letters, details = TRUE)

$emmeans
dose emmean SE df lower.CL upper.CL .group
C 37.7 1.67 2 30.5 44.8 a
B 46.0 1.67 2 38.8 53.2 ab
A 54.3 1.67 2 47.2 61.5 b
##
Results are averaged over the levels of: day, rabbit
Confidence level used: 0.95

5

P value adjustment: tukey method for comparing a family of 3 estimates
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.
##
$comparisons
contrast estimate SE df t.ratio p.value
B - C 8.33 2.36 2 3.536 0.1274
A - C 16.67 2.36 2 7.071 0.0352
A - B 8.33 2.36 2 3.536 0.1274
##
Results are averaged over the levels of: day, rabbit
P value adjustment: tukey method for comparing a family of 3 estimates

We see that doses A and C are different but B could be similar to either A or C.

It is not possible to add interactions between the variables because we only observe each combination of
rabbit and dose a single time. The resulting model has 11 parameters for the mean model (1 for the intercept,
2 to model the effect of day and 8 to model the interaction between dose and rabbit) which is greater than
the number of observations so we cannot estimate the parameters.

Exercise 6.3 Cover crops for apples
Problem

In East Malling the total harvest of apples (in pounds) in a four year experimental period was investigated
in a randomized block design with six treatments (cover crops A, . . . , F) and four blocks. The design
was implemented with 6 plots per block randomized over treatments. Beside the total harvest y in the
experimental period, the total harvest x in a 4 years period prior to treatment was also recorded. The data
are as follows (dataset available in file apples.txt):

Block
1 2 3 4

Cover crop x y x y x y x y
A 8.2 287 9.4 290 7.7 254 8.5 307
B 8.2 271 6.0 209 9.1 243 10.1 348
C 8.2 234 7.0 210 9.7 286 9.9 371
D 5.7 189 5.5 205 10.2 312 10.3 375
E 6.1 210 7.0 276 8.7 279 8.1 344
F 7.6 222 10.1 301 9.0 238 10.5 257

Analyse the data! Is there a significant effect of cover crop on the total harvest? Does the total harvest in
the experimental period depend on the total harvest in the preceding period?

Assume that the previous harvest x was not measured. Is it then possible to find significant differences
between the effect of cover crop?

Remark: The variables y and x appear to be recorded on different scales, i.e. the values of y approximately
30 times as big as the values of x. You can ignore this difference in scale, and simply use x as a covariate in
the analysis of y.

Solution

We load the data:

6

apple <- read.delim("apples.txt")
apple$block <- factor(apple$block)
summary(apple)

cover block x y
Length:24 1:6 Min. : 5.500 Min. :189.0
Class :character 2:6 1st Qu.: 7.000 1st Qu.:231.0
Mode :character 3:6 Median : 8.350 Median :273.5
4:6 Mean : 8.308 Mean :271.6
3rd Qu.: 9.750 3rd Qu.:302.5
Max. :10.500 Max. :375.0

We fit an ANCOVA model and validate it:

m1 <- lm(y ~ block + cover * x, data = apple)
par(mfrow = c(2, 2))
plot(m1)

200 250 300 350

−
30

0
30

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

24

23

10

−2 −1 0 1 2

−
2

0
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

24 21

9

200 250 300 350

0.
0

1.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
24219

0.0 0.2 0.4 0.6 0.8

−
2

0
2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance
1

0.5

Residuals vs Leverage

2124

9

par(mfrow = c(1, 1))

The residuals do not look normally distributed; some of them are too large. This usually indicates the need
for a logarithmic transformation of the response. We try this and validate the model:

m2 <- lm(log(y) ~ block + cover * x, data = apple)
par(mfrow = c(2, 2))
plot(m2)

7

5.3 5.5 5.7 5.9

−
0.

10
0.

05

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

2410

9

−2 −1 0 1 2

−
2

0
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

24

9

21

5.3 5.5 5.7 5.9

0.
0

1.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
249 21

0.0 0.2 0.4 0.6 0.8
−

2
0

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance
1

0.5

Residuals vs Leverage

2124

9

par(mfrow = c(1, 1))

This looks better! We try to reduce the model:

drop1(m2, test = "F")

Single term deletions
##
Model:
log(y) ~ block + cover * x
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 0.060112 -113.750
block 3 0.118555 0.178667 -93.607 5.9167 0.01636 *
cover:x 5 0.059425 0.119537 -107.252 1.7794 0.21318

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can drop the interaction between cover and x:

m3 <- lm(log(y) ~ block + cover + x, data = apple)
drop1(m3, test = "F")

Single term deletions
##
Model:
log(y) ~ block + cover + x
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 0.11954 -107.252
block 3 0.074313 0.19385 -101.649 2.9012 0.07210 .
cover 5 0.136614 0.25615 -98.961 3.2000 0.03917 *
x 1 0.294130 0.41367 -79.458 34.4480 4.08e-05 ***

8

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Although block is not significant, it would increase AIC significantly if we drop it, so we keep it. We conclude
that there is a highly significant effect of cover on the total harvest (p = 4cdot10−5). There is also a significant
effect of the previous harvest on the current harvest (p = 0.04).

The model parameters an confidence intervals are:

cbind(estimate = coef(m3), confint(m3))

estimate 2.5 % 97.5 %
(Intercept) 4.716019758 4.40022427 5.03181524
block2 0.006163623 -0.10938644 0.12171369
block3 -0.079264485 -0.21840972 0.05988075
block4 0.078820997 -0.07268536 0.23032735
coverB -0.064940039 -0.20513612 0.07525604
coverC -0.043713658 -0.18390974 0.09648242
coverD -0.031875487 -0.17359869 0.10984772
coverE 0.068869920 -0.07666189 0.21440173
coverF -0.209247187 -0.35350308 -0.06499129
x 0.110170000 0.06991080 0.15042920

We use emmeans to get an idea of the size of the effect of cover:

library(emmeans)
confint(emmeans(m3, ~cover))

cover emmean SE df lower.CL upper.CL
A 5.63 0.0463 14 5.53 5.73
B 5.57 0.0462 14 5.47 5.67
C 5.59 0.0462 14 5.49 5.69
D 5.60 0.0468 14 5.50 5.70
E 5.70 0.0488 14 5.60 5.81
F 5.42 0.0498 14 5.32 5.53
##
Results are averaged over the levels of: block
Results are given on the log (not the response) scale.
Confidence level used: 0.95

multcomp::cld(emmeans(m3, ~cover), Letters = letters)

cover emmean SE df lower.CL upper.CL .group
F 5.42 0.0498 14 5.32 5.53 a
B 5.57 0.0462 14 5.47 5.67 ab
C 5.59 0.0462 14 5.49 5.69 ab
D 5.60 0.0468 14 5.50 5.70 ab
A 5.63 0.0463 14 5.53 5.73 ab
E 5.70 0.0488 14 5.60 5.81 b
##
Results are averaged over the levels of: block
Results are given on the log (not the response) scale.
Confidence level used: 0.95
P value adjustment: tukey method for comparing a family of 6 estimates
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.

9

We see that only covers E and F are significantly different. To get interpretable estimates, we need to
back-transform from the log scale. This results in confidence intervals for the ratios between covers:

confint(pairs(emmeans(m3, ~cover), type = "response"))

contrast ratio SE df lower.CL upper.CL
A / B 1.067 0.0698 14 0.861 1.32
A / C 1.045 0.0683 14 0.843 1.29
A / D 1.032 0.0682 14 0.831 1.28
A / E 0.933 0.0633 14 0.747 1.17
A / F 1.233 0.0829 14 0.989 1.54
B / C 0.979 0.0640 14 0.790 1.21
B / D 0.967 0.0637 14 0.780 1.20
B / E 0.875 0.0589 14 0.701 1.09
B / F 1.155 0.0782 14 0.925 1.44
C / D 0.988 0.0650 14 0.796 1.23
C / E 0.894 0.0602 14 0.716 1.11
C / F 1.180 0.0799 14 0.945 1.47
D / E 0.904 0.0596 14 0.728 1.12
D / F 1.194 0.0839 14 0.948 1.50
E / F 1.321 0.0974 14 1.037 1.68
##
Results are averaged over the levels of: block
Confidence level used: 0.95
Conf-level adjustment: tukey method for comparing a family of 6 estimates
Intervals are back-transformed from the log scale

If we omit the previous harvest x from the model then we are no longer able to detect an effect of cover:

drop1(lm(log(y) ~ block + cover, data = apple), test = "F")

Single term deletions
##
Model:
log(y) ~ block + cover
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 0.41367 -79.458
block 3 0.43133 0.84499 -68.316 5.2134 0.01151 *
cover 5 0.03313 0.44680 -87.609 0.2403 0.93836

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This means that using the additional information about last years harvest results in more powerful analysis!

Exercise 6.4 Constructing a latin square design
Problem

The objective of this exercise is to use the AlgDesign-package in R to generate the latin square design from
Exercise 6.2. The full factorial design with 33 = 27 observations may be generated by the following code:

library(AlgDesign)
full.factorial <- gen.factorial(levels=3, nVars=3,

varNames=c("Rabbit", "Day", "Dose"))
full.factorial

In this design the levels of the 3 variables are the numbers −1, 0, 1. To make it easier for us to look at the
variables we may recode the levels, which may be done using the following code:

10

full.factorial <- with(full.factorial,data.frame(
Rabbit=factor(c("Rabbit 1", "Rabbit 2", "Rabbit 3")[2+Rabbit]),
Day=factor(c("Day 1", "Day 2", "Day 3")[2+Day]),
Dose=factor(c("Dose A", "Dose B", "Dose C")[2+Dose])))

Have a look at the full factorial design with the recoded variable levels. Now use the optFederov() function
to make a design with 9 observations where you have interest on the main effects of the 3 variables. Do you
find the design from Exercise 6.2?

Remarks:

1. The optFederov() looks for a D-optimal design. And in this particular situation the latin square design
is the D-optimal design, so you would expect that optFederov() will find the latin square. However,
optFederov() does a random search, so you may be unlucky that is does not find the true optimum.
To improve on this you may increase the nRepeats-option, e.g. using nRepeats=1000.

2. You may need to rename the levels of Dose and Rabbit to have an exact match with the table in Exercise
6.2. Using different names for the levels does, of course, not change the basic properties of the design.

Solution

We generate the full factorial design:

library(AlgDesign)
full_factorial <- gen.factorial(

levels = 3, nVars = 3,
varNames = c("Rabbit", "Day", "Dose")

)
full_factorial

Rabbit Day Dose
1 -1 -1 -1
2 0 -1 -1
3 1 -1 -1
4 -1 0 -1
5 0 0 -1
6 1 0 -1
7 -1 1 -1
8 0 1 -1
9 1 1 -1
10 -1 -1 0
11 0 -1 0
12 1 -1 0
13 -1 0 0
14 0 0 0
15 1 0 0
16 -1 1 0
17 0 1 0
18 1 1 0
19 -1 -1 1
20 0 -1 1
21 1 -1 1
22 -1 0 1
23 0 0 1
24 1 0 1
25 -1 1 1

11

26 0 1 1
27 1 1 1

The default encoding uses the numbers -1, 0 and 1 for the levels. We can recode this to make it easier to see
what is happening:

full_factorial <- with(full_factorial, data.frame(
Rabbit = factor(

c("Rabbit 1", "Rabbit 2", "Rabbit 3")[2 + as.numeric(Rabbit)]
),
Day = factor(c("Day 1", "Day 2", "Day 3")[2 + as.numeric(Day)]),
Dose = factor(c("Dose A", "Dose B", "Dose C")[2 + as.numeric(Dose)])

))
full_factorial

Rabbit Day Dose
1 Rabbit 1 Day 1 Dose A
2 Rabbit 2 Day 1 Dose A
3 Rabbit 3 Day 1 Dose A
4 Rabbit 1 Day 2 Dose A
5 Rabbit 2 Day 2 Dose A
6 Rabbit 3 Day 2 Dose A
7 Rabbit 1 Day 3 Dose A
8 Rabbit 2 Day 3 Dose A
9 Rabbit 3 Day 3 Dose A
10 Rabbit 1 Day 1 Dose B
11 Rabbit 2 Day 1 Dose B
12 Rabbit 3 Day 1 Dose B
13 Rabbit 1 Day 2 Dose B
14 Rabbit 2 Day 2 Dose B
15 Rabbit 3 Day 2 Dose B
16 Rabbit 1 Day 3 Dose B
17 Rabbit 2 Day 3 Dose B
18 Rabbit 3 Day 3 Dose B
19 Rabbit 1 Day 1 Dose C
20 Rabbit 2 Day 1 Dose C
21 Rabbit 3 Day 1 Dose C
22 Rabbit 1 Day 2 Dose C
23 Rabbit 2 Day 2 Dose C
24 Rabbit 3 Day 2 Dose C
25 Rabbit 1 Day 3 Dose C
26 Rabbit 2 Day 3 Dose C
27 Rabbit 3 Day 3 Dose C

We use the optFederov function to find the latin square design:

latin_square <- optFederov(~ Rabbit + Day + Dose, full_factorial,
nTrials = 9

)$design
latin_square

Rabbit Day Dose
3 Rabbit 3 Day 1 Dose A
4 Rabbit 1 Day 2 Dose A
8 Rabbit 2 Day 3 Dose A
10 Rabbit 1 Day 1 Dose B
14 Rabbit 2 Day 2 Dose B

12

18 Rabbit 3 Day 3 Dose B
20 Rabbit 2 Day 1 Dose C
24 Rabbit 3 Day 2 Dose C
25 Rabbit 1 Day 3 Dose C

We can use the xtabs function to more easily summarize the design:

xtabs(~ Rabbit + Day + Dose, latin_square)

, , Dose = Dose A
##
Day
Rabbit Day 1 Day 2 Day 3
Rabbit 1 0 1 0
Rabbit 2 0 0 1
Rabbit 3 1 0 0
##
, , Dose = Dose B
##
Day
Rabbit Day 1 Day 2 Day 3
Rabbit 1 1 0 0
Rabbit 2 0 1 0
Rabbit 3 0 0 1
##
, , Dose = Dose C
##
Day
Rabbit Day 1 Day 2 Day 3
Rabbit 1 0 0 1
Rabbit 2 1 0 0
Rabbit 3 0 1 0

This is indeed the latin square!

Exercise 6.5 Non-linear regression
Problem

The following experiment was carried out in a greenhouse: 15 pots were sown with barley seeds: 3, 7, 15, 34,
77 barley seeds per pot, respectively, with three pots for each number of barley seeds. After harvest, the
total fresh weight yields (in grams) were measured for each pot. The results are listed in the table below:

No. of seeds Yield
3 7.5 9.8 9.0
7 18.8 27.7 27.1
15 64.7 30.2 37.0
34 84.3 110.0 71.2
77 125.8 85.7 91.9

We want to use the following non-linear model for the relationship between number of barley seeds, x = seeds,
and the logarithmic yield, y = log(yield):

y ≈ a − b · e−cx (1)

Please answer the following questions:

1. Plot the logarithmic yield (variable y) against seeds.

13

2. What is the interpretation of the parameters a and b? Make a qualified guess on the values for a and b.

Hint: What happens for x = 0 and x very large?

3. Although more difficult it is also possible to make a qualified guess on the c parameter, namely:

c ≈ log(2)
15 ≈ 0.045

You are welcome to explain the reasoning behind this guess (if you can), but otherwise you may simply
take it for granted.

4. Assuming that that data frame with the observations is called barley, the following R code makes
an interactive plot in RStudio (remember to install the manipulate-package if you have not done it
before):

library(manipulate)
manipulate(

{plot(log(yield) ~ seeds, data=barley)
x <- 0:80
y <- a - b * exp(-c * x)
lines(x, y)},

a=slider(2, 8, initial=5, step=0.1),
b=slider(0, 4, initial=2, step=0.1),
c=slider(0, 0.1, initial=0.045, step=0.005)

)

Try this and click on the gear sprocket (in danish: tandhjul) icon in the graphical window to manipulate
the a, b and c parameters interactively. See if you can change the parameters such that the data points
are fitted closely by the non-linear curve.

Remark: In this way the manipulate() function may be used to derive initial guesses for the parameters
in a non-linear regression. However, if you already have an adequate guess, then this is not necessary.

5. Use nls() with the initial guesses given in the start-option to fit the parameters a, b and c by a
non-linear regression.

6. Give estimates and confidence intervals for the parameters a, b and c.

7. Is the non-linear model valid?

Hint: You may make a residual plot and normal quantile plot by “hand” using the code on slide 9 (Day
6).

8. For some of the “classical” and often used non-linear functions there exist so-called self-starting functions
in R. The non-linear function used in this exercise is one of these functions. The associated R function
is called SSasymp(). Try the following R code and relate it to the results you found above:

m2 <- nls(log(yield) ~ SSasymp(seeds, a, a.minus.b, log.c), data=barley)
cbind(estimate=coef(m2), confint(m2))

Remark: SSasymp() uses a different parametrization than the one used in Eq. (1). Can you describe
how you pass between these parametrizations?

(Reference: Based on exercise 8.6 from Anders Tolver & Helle S{ø}rensen: Lecture notes for Applied Statistics.)

Solution

We read the data:

14

barley <- read.delim("barley.txt")
summary(barley)

seeds yield
Min. : 3.0 Min. : 7.50
1st Qu.: 7.0 1st Qu.: 22.95
Median :15.0 Median : 37.00
Mean :27.2 Mean : 53.38
3rd Qu.:34.0 3rd Qu.: 85.00
Max. :77.0 Max. :125.80

We plot the variables:

library(ggplot2)
ggplot(barley, aes(x = seeds, y = log(yield))) +

geom_point()

2

3

4

0 20 40 60 80

seeds

lo
g(

yi
el

d)

The parameter a in the model corresponds to the value of the logarithimic yield with “infinite seeds”. The
parameter b in the model is such that a − b is the logarithmic yield with 0 seeds. From looking at the plot, a
reasonable guess for a is around 4.5 while a − b should be around 2 (so b is around 2.5).

As we are dealing with exponential growth we can use the rule of thumb that growth rate is log(2) divided by
the doubling time. In this case, the doubling time is around 15 (from the plot) so we get an estimate for c of
log(2)/15 ≈ 0.045.

It is possible to use the code below to find even better guesses for the parameters: {r. eval=FALSE}
library(manipulate) manipulate({plot(log(yield) ~ seeds, data=barley) x <- 0:80 y <-
a - b * exp(-c * x) lines(x, y)}, a=slider(2, 8, initial=5, step=0.1), b=slider(0, 4,
initial=2, step=0.1), c=slider(0, 0.1, initial=0.045, step=0.005)) Using the guesses from the
code above, we can now fit the parameters by a non-linear regression:

15

m1 <- nls(log(yield) ~ a - b * exp(-c * seeds),
start = list(a = 4.8, b = 2.6, c = 0.06), data = barley

)

We get estimates:

cbind(estimate = coef(m1), confint(m1))

Waiting for profiling to be done...

estimate 2.5% 97.5%
a 4.57213011 4.30690162 4.8714858
b 3.13216777 2.53800764 3.8987141
c 0.09900851 0.06094905 0.1597193

None of the confidence intervals are close to 0 so we will omit significance testing (as all parameters are surely
significant). We validate the model:

par(mfrow = c(1, 2))
qqnorm(residuals(m1))
abline(mean(residuals(m1)), sd(residuals(m1)))

plot(predict(m1), residuals(m1), main = "Residual by Predicted plot: Barley")
abline(0, 0, lty = 2)

−1 0 1

−
0.

4
−

0.
2

0.
0

0.
2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

2.5 3.0 3.5 4.0 4.5

−
0.

4
−

0.
2

0.
0

0.
2

Residual by Predicted plot: Barley

predict(m1)

re
si

du
al

s(
m

1)

par(mfrow = c(1, 1))

The plots look good! We try the self-starting parameterization:

m2 <- nls(log(yield) ~ SSasymp(seeds, a, a.minus.b, log.c), data = barley)
cbind(estimate = coef(m2), confint(m2))

Waiting for profiling to be done...

estimate 2.5% 97.5%

16

a 4.572127 4.3069016 4.871486
a.minus.b 1.439952 0.5850706 2.049297
log.c -2.312541 -2.7980108 -1.834396

We can use the naming of the variables to convert the results here to the other parametrization; the first
parameter is the same in both m1 and m2. To recover b from m2 we compute the difference between the first
and second parameters (the unname function removes an incorrect name applied to the result):

unname(coef(m2)[1] - coef(m2)[2])

[1] 3.132175

To obtain c, we take the exponential of the third parameter:

unname(exp(coef(m2)[3]))

[1] 0.09900937

These results agree with what we found using m1.

17

	Causal inference using an instrumental variable
	Problem
	Solution

	Latin square
	Problem
	Solution

	Cover crops for apples
	Problem
	Solution

	Constructing a latin square design
	Problem
	Solution

	Non-linear regression
	Problem
	Solution

