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Datasets and R scripts can be downloaded in a ZIP archive from the Absalon page (Applied
Statistics) or from

https://www.arlundborg.com/assets/SmS/data/day4.zip

Exercise 4.1 Multilinear regression and multicollinearity

Multilinear regression refers to the situation where several continuous covariates are used
together as explanatory variables in a regression analysis. When doing a multilinear
regression you should be aware of the potential pitfalls that may arise if the covariates
are multicollinear. The purpose of this exercise is to exemplify these pitfalls. This exercise
should be done without opening RStudio, but if you want to try the R code yourselves
you may find the dataset in the file wage.txt.

We consider data taken from The Current Population Survey (CPS) made in the US
in 1985. The dataset contains observations of the following 6 variables for 532 individuals:

edu: length of the person’s total education in years.

sex: gender of the person’s (1=female, 0=male).

exper: length of the person’s working experience in years.

wage: wage in US dollars per hour.

age: age of the person in years.

occup: profession (1=management, 2=trade, 3=office, 4=service, 5=craft, 6=other).

The following R code fits a multilinear regression of wage on length of education,
length of working experience, and age among women working with craftsmanship1:

1Model validation would reveal that it is better to model the logarithm of the wage but in order not
to give the impression that responses should always be log-transformed (which is true!), and also to keep
the interpretations of the parameters estimates as simple as possible, we will not transform the response
variable. This is ok since the emphasis of this exercise is multicollinearity and not model validity.
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> summary(lm(wage ~ edu + exper + age,

data = subset(wage, (sex == 1) & (occup == 5))))

Call:

lm(formula = wage ~ edu + exper + age, data = wage_subset)

Residuals:

Min 1Q Median 3Q Max

-6.5109 -2.9453 -0.6629 2.0672 14.0105

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -15.4931 6.6457 -2.331 0.024 *

edu 0.7059 0.8524 0.828 0.412

exper -0.6247 0.8723 -0.716 0.477

age 0.6775 0.7964 0.851 0.399

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.593 on 48 degrees of freedom

Multiple R-squared: 0.3097,Adjusted R-squared: 0.2666

F-statistic: 7.179 on 3 and 48 DF, p-value: 0.0004461

From the model summary we see that neither of the 3 explanatory variables are close
to significance. However, the multilinear regression still explains 30.97% (i.e. the R2)
of the variation in the wages, and taken together the 3 explanatory variables are highly
significant (p = 0.0004461).

• Compare the summary-output to the statements made above and confirm that the
reporting of hypothesis tests and R2 is correct.

• Is there an interpretation of the sign of the estimates for the 3 slopes? E.g. do
craftswomen earn more if they have more working experience? Or is it impossible
to make such an interpretation in this case?

• An automated backward model reduction would proceed by removing exper being
the least significant variable. However, what are the arguments for removing age

instead?

The fit of the multilinear regression after removal of age is given on the next page.
Please consider the following questions:

• What has happened to the p-values for edu and exper?

• What has happened to the sign of the slope of exper? Do you think that the
positive sign makes more sense? Why/why not?

> summary(lm(wage ~ edu + exper,

data = subset(wage, (sex == 1) & (occup == 5))))
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Call:

lm(formula = wage ~ edu + exper, data = subset(wage, (sex ==

1) & (occup == 5)))

Residuals:

Min 1Q Median 3Q Max

-5.9828 -3.0854 -0.6495 1.7550 14.1748

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.85350 5.07118 -2.337 0.0235 *

edu 1.38007 0.31307 4.408 5.68e-05 ***

exper 0.11552 0.06237 1.852 0.0700 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.581 on 49 degrees of freedom

Multiple R-squared: 0.2993,Adjusted R-squared: 0.2707

F-statistic: 10.47 on 2 and 49 DF, p-value: 0.0001641

The following output from R shows that edu and exper may be considered uncor-
related in the subpopulation of craftswomen. Does this have any implication for the
interpretation of the slope estimates on edu and exper given above? Why/why not?
And what if edu and exper actually are negatively correlated, i.e. if working experience
in general is shorter for craftswomen with a longer education?

> with(subset(wage, (sex == 1) & (occup == 5)), cor.test(edu, exper))

Pearson’s product-moment correlation

data: edu and exper

t = -1.0381, df = 50, p-value = 0.3042

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.4022055 0.1329212

sample estimates:

cor

-0.1452478

Multicollinearity means that some of the covariates explains the same property in the
experimental units e.g. if you have a long education as well as long working experience,
then you will most likely also have a comparably high age. It stands to reason that we
will only need two of the three variables edu, exper, age in order to characterize these
properties of a person. To decide which two of these variables provides the “correct”
explanation can not be done based on statistics, but relies on the interpretation of the
variables. When there is multicollinearity among the explanatory variables, the p-values
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may change from non-significant to highly significant and the estimates may change sign
after model reduction. That there is multicollinearity in the present dataset may be seen
from the following analysis2

> summary(lm(age ~ edu + exper, data=wage))

Call: lm(formula = age ~ edu + exper, data = wage)

Residuals:

Min 1Q Median 3Q Max

-3.8507 -0.3801 -0.0122 0.4081 2.1230

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.09160 0.19182 31.76 <2e-16 ***

edu 0.98494 0.01281 76.91 <2e-16 ***

exper 1.05558 0.00271 389.51 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7235 on 529 degrees of freedom

Multiple R-squared: 0.9966,Adjusted R-squared: 0.9966

F-statistic: 7.793e+04 on 2 and 529 DF, p-value: < 2.2e-16

Please do the following:

• Comment on the R2-value as well as the significance tests.

• What is the interpretation of the estimate of the intercept?

• What is the interpretation of the null hypothesis that the slopes on edu and exper

both equal 1?

• What is the interpretation of the error term, and the RMSE = 0.7235?

Exercise 4.2 ANCOVA, statistical modeling, and more

In this exercise we investigate the world records for outdoor running distances. The
records were taken from the website http://www.iaaf.org of the International Associa-
tion of Athletics Federation on May 7, 2011. We want to examine the dependence of the
record (time) on the distance, and to examine the difference between men and women.
The purpose of this exercise is to give a non-trivial example of the choices needed in
making simple statistical models with sensible interpretations.

The following items guide you through such an analysis step-by-step:

• Read the dataset available in the text file WR2011.txt into R (in a data frame called
wr), and have a look at the variables:

2A few more suggestions for the identification of multicollinearity may be found in the solution to the
exercise.
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– Please note that the distances are more or less doubled between consecutive
running disciplines. Thus, the running distances are almost equidistant on a
logarithmic scale.

– The variable DOB contains the data-of-birth of the record holder. The variables
Place and Date contain the place and date of the record. These variables will
not be used in this exercise.

– The variable bend is not in the original data, and will be used later. This vari-
able quantifies how many times longer than 1500 meters the running distance
in question is, and it is set to 1 if the distance is shorter than 1500 meters.

– Make sure that the variables time, distance and bend are numerical, and
that sex is a categorical factor.

• Produce a plot of time against distance using the code:

library(ggplot2)

ggplot(wr) + geom_point(aes(x = distance, y = time, col = sex))

This plot corresponds to the relationship:

time = α + β · distance.

The parameter β describes the running velocity. Thus, in this model the running
velocity is the same no matter the distance. Is this realistic?

• Create a plot of log(time) against log(distance). This plot corresponds to the
relationship:

log(time) = α + β · log(distance).

Taking the exponential function on both sides we find:

time = exp(α) · log(distance)β.

It is not obvious that this is a good model. But what do you think looking at the
plot?

• Perform the following linear regression:

m1 <- lm(log(time) ~ sex + log(distance) + sex:log(distance), data = wr)

In this model both the α and the β parameter depend on the gender:

log(timei) = α(sexi) + β(sexi) · log(distancei) + errori.

Such a model is called an ANCOVA (ANalysis of COVAriance). The ANCOVA
will allow us to compare the records for men and women.

5



• Is this ANCOVA model valid? Look in particular at the residual plot (called “Resid-
uals vs Fitted” if you use plot(m1)). It seems there is a bend at observations
number 6 and 22. One way to identify these observation numbers is to use the
identify() function. To use this the residual plot should fill the entire graphics
window, so we will make it again. Try the R code3

par(mfrow=c(1, 1))

plot(predict(m1), residuals(m1))

identify(predict(m1), residuals(m1))

and use the mouse to click on the points where you think the bend is positioned.
After you are done, finish the identifier as signified in the graphics window (in
Windows you should press the Esc-key).

Remark: If identity() does not work inside RStudio, then a solution might be to
open a separate graphical device using the function x11() before making the plot.

• Check that observations number 6 and 22 correspond to the 1500-meter distance
for men and women, respectively. Thus, there appears to be a difference between
short running distances (less than 1500 meters) and long running distances (more
than 1500 meters).

• In order to allow the regression lines to bend at 1500 meters we include the variable
bend in the ANCOVA model:

log(timei) = α(sexi) + β(sexi) · log(distancei) + γ(sexi) · log(bendi) + errori.

Fit this model.

• Is the extended ANCOVA model valid? (Hint: No.)

• Refit the extended ANCOVA without using observations number 1, 11, 12, 14, 15,
17, 27, 28, 30, and 31. This may be done using the option

data = wr[-c(1, 11, 12, 14, 15, 17, 27, 28, 30, 31),]

in the call to lm(). Does this improve the model validity?

• Which distances do the removed observations represent? Do you think it is fair
to remove the world records for these running distances from the present analysis?
Why/why not?

Hint: This may require some knowledge about athletics.

In any case, for the remainder of this exercise you should remove these observations
from the analysis.

• Use the function step() to do model selection based on the Akaike Information
Criterion.

3The line par(mfrow=c(1, 1)) is only necessary if you did par(mfrow=c(2, 2)) before.

6



• The AIC-based selection should result in the model, where the interactions between
sex and log(distance), log(bend) are removed:

log(timei) = α(sexi) + β · log(distancei) + γ · log(bendi) + errori.

Thus, the difference between men and women is only via the alpha parameter.
Convince yourself that the number

exp
(
α(woman) − α(man)

)
quantifies how much slower the women run than the men.

• Give a 95% confidence interval for the relative running speed of women compared
to men.

Hint: The contrast α(woman) − α(man) is called sexwoman in the parametrization
used by R.

(Reference: Based on exercise 8.2 from Anders Tolver & Helle Sørensen: Lecture notes
for Applied Statistics.)

Exercise 4.3 Incomplete block experiment

The following experiment was carried out by H. Wolffhechel, KVL, in 1986. The purpose
of the experiment was to compare 12 sphagnum lots with respect to water and air content.
Each lot was applied to four pots with small cucumber plants. The pots were placed in
one of six watering troughs, each containing eight pots. The experimental design and
the volume (water and air content), in percent, is given in the following table (dataset
available in file sphagnum.txt) for each pot.

Watering trough
Sphagnum lot 1 2 3 4 5 6 Mean

1 37.0 44.6 42.5 47.1 42.80
2 49.0 50.5 51.0 44.8 48.83
3 34.6 42.7 41.8 37.8 39.23
4 45.3 42.7 47.7 42.8 44.63
5 32.1 38.5 32.0 31.6 33.55
6 34.3 33.3 34.0 22.6 31.05
7 32.3 28.1 28.1 32.3 30.20
8 38.9 36.5 39.7 34.8 37.48
9 33.9 31.4 32.1 23.0 30.10
10 39.7 41.8 43.5 33.8 39.70
11 41.1 38.1 31.1 37.9 37.05
12 35.9 7.5 36.2 25.5 26.28

Construct and validate the additive model for volume, i.e. the model including only
the main effects of the two explanatory variables lot and trough:
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1. Remember that the variables lot and trough should be used as factors. You can
achieve this by using the factor() function in the call to lm(). However, in this
exercise it is recommended that you change the type of the variables in the data
frame at the beginning of your R code:

sphagnum <- read.delim("sphagnum.txt")

sphagnum$lot <- factor(sphagnum$lot)

sphagnum$trough <- factor(sphagnum$trough)

2. You probably want to remove the “extreme” observation volume = 7.5 for (lot, trough) =
(12, 2). Can you use the validation plots in R to identify the number of this obser-
vation?

Find the estimated marginal means of volume for the 12 different sphagnum lots using
the additive model. Why are these em-means different from the raw means listed in the
above table? Do you prefer the raw means or the em-means? Why?

Remark: The emmeans-package may be used to compute and compare the em-means.
The statistical computations done in the emmeans-package are based on standard errors
extracted from the model objects. Suppose e.g. that your model is available in an lm-
object called m2, and try the following R code (and think about what the code does):

# load library

library(emmeans)

# Create and plot em-means

emmeans(m2, ~ lot)

plot(emmeans(m2, ~ lot))

# Tukey grouping of em-means

# Note: the p-values are adjusted for multiple testing,

# but the confidence intervals are not adjusted!

# Note: Also needs multcomp-package to be installed

# (but not necessarily loaded!)

multcomp::cld(emmeans(m2, ~ lot))

# Remark: The author of the emmeans-package, Russell Lenth,

# does not like the "compact letter display".

# Earlier there was a CLD() in the emmeans-package, but

# this functionality has been removed from the package!

# Luckily, you may use multcomp::cld() instead!

# As a replacement for the CLD() functionality Russell

# proposes the following plot. Some may find this

# display to be too busy. But what do you think?

pwpp(emmeans(m2, ~ lot))
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# An alternative to pwpp() is to find and plot

# simultaneous confidence intervals.

# Note, however, that replacing hypothesis tests by

# looking for overlap between confidence intervals

# may be misleading.

confint(emmeans(m2, ~ lot),adjust="tukey")

plot(confint(emmeans(m2, ~ lot),adjust="tukey"))

Remark: An alternative is to use the multcomp package. However, the syntax for that
package can be much more difficult to learn. It is therefore recommended to use the
emmeans package.

Exercise 4.4 Linear regression

In a field experiment the concentration of phosphorus available for plant growth was
measured for each of 18 plants. Furthermore, the concentration of inorganic phosphorus
was chemically determined and the concentration of an organic phosphorus component
was measured for each plant. The primary interest of the study is to describe the con-
centration of phosphorus available as a function of the concentrations of inorganic and
organic phosphorus. We have the following Table of Variables :

Variable Type Usage
inorganic continuous fixed effect
organic continuous fixed effect
available continuous response

The dataset is shown below, and it is also available in the text file phosphorus.txt:

inorganic organic available

0.4 53 64
0.4 23 60
3.1 19 71
0.6 34 61
4.7 24 54
1.7 65 77
9.4 44 81
10.1 31 93
11.6 29 93
12.6 58 51
10.9 37 76
23.1 46 96
23.1 50 77
21.6 44 93
23.1 56 95
1.9 36 54
26.8 58 168
29.9 51 99

Analyze the data, i.e. answer the generic questions:
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• Is there an association?

• What is the association?

• Can the conclusions be trusted?

Hints and suggestions: If you do a multilinear regression of available on inorganic

and organic, then one of the observations is not well-modelled. You may either decide
to remove this observation (what is the easiest way to do this in R?). Alternatively, you
may try a different analysis e.g. by doing a logarithmic transformation of the response
variable.

(Reference: Exercise 8.4 from Anders Tolver & Helle Sørensen: Lecture notes for Applied
Statistics.)
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