Exercises for Day 4
 Applied Statistics \& Statistical methods for the Biosciences

Anton Rask Lundborg

December 2023

Datasets and R scripts can be downloaded in a ZIP archive from the Absalon page (Applied Statistics) or from
https://www.arlundborg.com/assets/SmS/data/day4.zip

Exercise 4.1 Multilinear regression and multicollinearity

Multilinear regression refers to the situation where several continuous covariates are used together as explanatory variables in a regression analysis. When doing a multilinear regression you should be aware of the potential pitfalls that may arise if the covariates are multicollinear. The purpose of this exercise is to exemplify these pitfalls. This exercise should be done without opening RStudio, but if you want to try the R code yourselves you may find the dataset in the file wage.txt.

We consider data taken from The Current Population Survey (CPS) made in the US in 1985. The dataset contains observations of the following 6 variables for 532 individuals:
edu: length of the person's total education in years.
sex: gender of the person's ($1=$ female, $0=$ male).
exper: length of the person's working experience in years.
wage: wage in US dollars per hour.
age: age of the person in years.
occup: profession ($1=$ management, $2=$ trade, $3=$ office, $4=$ service, $5=$ craft, $6=$ other $)$.
The following R code fits a multilinear regression of wage on length of education, length of working experience, and age among women working with craftsmanship ${ }^{17}$

[^0]```
> summary(lm(wage ~ edu + exper + age,
 data = subset(wage, (sex == 1) & (occup == 5))))
Call:
lm(formula = wage ~ edu + exper + age, data = wage_subset)
Residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-6.5109 & -2.9453 & -0.6629 & 2.0672 & 14.0105
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -15.4931 6.6457 -2.331 0.024*
edu }0.7059 0.8524 0.828 0.412
exper -0.6247 0.8723 -0.716 0.477
age 0.6775 0.7964 0.851
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.593 on 48 degrees of freedom
Multiple R-squared: 0.3097,Adjusted R-squared: 0.2666
F-statistic: 7.179 on 3 and 48 DF, p-value: 0.0004461
```

From the model summary we see that neither of the 3 explanatory variables are close to significance. However, the multilinear regression still explains $30.97 \%$ (i.e. the $R^{2}$ ) of the variation in the wages, and taken together the 3 explanatory variables are highly significant ( $p=0.0004461$ ).

- Compare the summary-output to the statements made above and confirm that the reporting of hypothesis tests and $R^{2}$ is correct.
- Is there an interpretation of the sign of the estimates for the 3 slopes? E.g. do craftswomen earn more if they have more working experience? Or is it impossible to make such an interpretation in this case?
- An automated backward model reduction would proceed by removing exper being the least significant variable. However, what are the arguments for removing age instead?

The fit of the multilinear regression after removal of age is given on the next page. Please consider the following questions:

- What has happened to the p-values for edu and exper?
- What has happened to the sign of the slope of exper? Do you think that the positive sign makes more sense? Why/why not?

```
> summary(lm(wage ~ edu + exper,
 data = subset(wage, (sex == 1) & (occup == 5))))
```

Call:
$\operatorname{lm}(f o r m u l a=$ wage $\sim$ edu + exper, data $=\operatorname{subset}($ wage, $($ sex ==

1) \& (occup $==5))$ )

## Residuals:

| Min | 1Q | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -5.9828 | -3.0854 | -0.6495 | 1.7550 | 14.1748 |

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -11.85350 5.07118 -2.337 0.0235 *
edu $\quad 1.38007 \quad 0.31307 \quad 4.408 \quad 5.68 \mathrm{e}-05$ ***
exper 0.115520 .062371 .8520 .0700 .
Signif. codes: $0{ }^{\prime} * * * ' 0.001$ ' $* *$ ' 0.01 ' $*$ ' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.581 on 49 degrees of freedom
Multiple R-squared: 0.2993,Adjusted R-squared: 0.2707
F-statistic: 10.47 on 2 and 49 DF, p-value: 0.0001641
The following output from R shows that edu and exper may be considered uncorrelated in the subpopulation of craftswomen. Does this have any implication for the interpretation of the slope estimates on edu and exper given above? Why/why not? And what if edu and exper actually are negatively correlated, i.e. if working experience in general is shorter for craftswomen with a longer education?

```
> with(subset(wage, (sex == 1) & (occup == 5)), cor.test(edu, exper))
Pearson's product-moment correlation
data: edu and exper
t = -1.0381, df = 50, p-value = 0.3042
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.4022055 0.1329212
sample estimates:
 cor
-0.1452478
```

Multicollinearity means that some of the covariates explains the same property in the experimental units e.g. if you have a long education as well as long working experience, then you will most likely also have a comparably high age. It stands to reason that we will only need two of the three variables edu, exper, age in order to characterize these properties of a person. To decide which two of these variables provides the "correct" explanation can not be done based on statistics, but relies on the interpretation of the variables. When there is multicollinearity among the explanatory variables, the $p$-values
may change from non-significant to highly significant and the estimates may change sign after model reduction. That there is multicollinearity in the present dataset may be seen from the following analysis ${ }^{2}$

```
> summary(lm(age ~ edu + exper, data=wage))
Call: lm(formula = age ~ edu + exper, data = wage)
Residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-3.8507 & -0.3801 & -0.0122 & 0.4081 & 2.1230
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.09160 0.19182 31.76 <2e-16 ***
edu

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7235 on 529 degrees of freedom
Multiple R-squared: 0.9966,Adjusted R-squared: 0.9966
F-statistic: 7.793e+04 on 2 and 529 DF, p-value: < 2.2e-16
```

Please do the following:

- Comment on the $R^{2}$-value as well as the significance tests.
- What is the interpretation of the estimate of the intercept?
- What is the interpretation of the null hypothesis that the slopes on edu and exper both equal 1 ?
- What is the interpretation of the error term, and the RMSE $=0.7235$ ?


## Exercise 4.2 ANCOVA, statistical modeling, and more

In this exercise we investigate the world records for outdoor running distances. The records were taken from the website http://www.iaaf.org of the International Association of Athletics Federation on May 7, 2011. We want to examine the dependence of the record (time) on the distance, and to examine the difference between men and women. The purpose of this exercise is to give a non-trivial example of the choices needed in making simple statistical models with sensible interpretations.

The following items guide you through such an analysis step-by-step:

- Read the dataset available in the text file WR2011.txt into R (in a data frame called wr), and have a look at the variables:

[^1]- Please note that the distances are more or less doubled between consecutive running disciplines. Thus, the running distances are almost equidistant on a logarithmic scale.
- The variable DOB contains the data-of-birth of the record holder. The variables Place and Date contain the place and date of the record. These variables will not be used in this exercise.
- The variable bend is not in the original data, and will be used later. This variable quantifies how many times longer than 1500 meters the running distance in question is, and it is set to 1 if the distance is shorter than 1500 meters.
- Make sure that the variables time, distance and bend are numerical, and that sex is a categorical factor.
- Produce a plot of time against distance using the code:

```
library(ggplot2)
ggplot(wr) + geom_point(aes(x = distance, y = time, col = sex))
```

This plot corresponds to the relationship:

$$
\text { time }=\alpha+\beta \cdot \text { distance }
$$

The parameter $\beta$ describes the running velocity. Thus, in this model the running velocity is the same no matter the distance. Is this realistic?

- Create a plot of $\log ($ time $)$ against $\log$ (distance). This plot corresponds to the relationship:

$$
\log (\text { time })=\alpha+\beta \cdot \log (\text { distance }) .
$$

Taking the exponential function on both sides we find:

$$
\text { time }=\exp (\alpha) \cdot \log (\text { distance })^{\beta} .
$$

It is not obvious that this is a good model. But what do you think looking at the plot?

- Perform the following linear regression:

```
m1 <- lm(log(time) ~ sex + log(distance) + sex:log(distance), data = wr)
```

In this model both the $\alpha$ and the $\beta$ parameter depend on the gender:

$$
\log \left(\text { time }_{i}\right)=\alpha\left(\operatorname{sex}_{i}\right)+\beta\left(\operatorname{sex}_{i}\right) \cdot \log \left(\text { distance }_{i}\right)+\text { error }_{i} .
$$

Such a model is called an ANCOVA (ANalysis of COVAriance). The ANCOVA will allow us to compare the records for men and women.

- Is this ANCOVA model valid? Look in particular at the residual plot (called "Residuals vs Fitted" if you use plot(m1)). It seems there is a bend at observations number 6 and 22 . One way to identify these observation numbers is to use the identify () function. To use this the residual plot should fill the entire graphics window, so we will make it again. Try the R cod $\epsilon^{3}$

```
par(mfrow=c(1, 1))
plot(predict(m1), residuals(m1))
identify(predict(m1), residuals(m1))
```

and use the mouse to click on the points where you think the bend is positioned. After you are done, finish the identifier as signified in the graphics window (in Windows you should press the Esc-key).
Remark: If identity () does not work inside RStudio, then a solution might be to open a separate graphical device using the function x11() before making the plot.

- Check that observations number 6 and 22 correspond to the 1500 -meter distance for men and women, respectively. Thus, there appears to be a difference between short running distances (less than 1500 meters) and long running distances (more than 1500 meters).
- In order to allow the regression lines to bend at 1500 meters we include the variable bend in the ANCOVA model:

$$
\log \left(\text { time }_{i}\right)=\alpha\left(\text { sex }_{i}\right)+\beta\left(\text { sex }_{i}\right) \cdot \log \left(\text { distance }_{i}\right)+\gamma\left(\text { sex }_{i}\right) \cdot \log \left(\text { bend }_{i}\right)+\text { error }_{i} .
$$

Fit this model.

- Is the extended ANCOVA model valid? (Hint: No.)
- Refit the extended ANCOVA without using observations number 1, 11, 12, 14, 15, $17,27,28,30$, and 31 . This may be done using the option

```
data = wr [-c(1, 11, 12, 14, 15, 17, 27, 28, 30, 31),]
```

in the call to $\operatorname{lm}()$. Does this improve the model validity?

- Which distances do the removed observations represent? Do you think it is fair to remove the world records for these running distances from the present analysis? Why/why not?

Hint: This may require some knowledge about athletics.
In any case, for the remainder of this exercise you should remove these observations from the analysis.

- Use the function step() to do model selection based on the Akaike Information Criterion.

[^2]- The AIC-based selection should result in the model, where the interactions between sex and $\log$ (distance), $\log$ (bend) are removed:

$$
\log \left(\text { time }_{i}\right)=\alpha\left(\text { sex }_{i}\right)+\beta \cdot \log \left(\text { distance }_{i}\right)+\gamma \cdot \log \left(\text { bend }_{i}\right)+\text { error }_{i} .
$$

Thus, the difference between men and women is only via the alpha parameter. Convince yourself that the number

$$
\exp (\alpha(\operatorname{woman})-\alpha(\operatorname{man}))
$$

quantifies how much slower the women run than the men.

- Give a $95 \%$ confidence interval for the relative running speed of women compared to men.

Hint: The contrast $\alpha$ (woman) $-\alpha(\operatorname{man})$ is called sexwoman in the parametrization used by R.
(Reference: Based on exercise 8.2 from Anders Tolver \& Helle Sørensen: Lecture notes for Applied Statistics.)

## Exercise 4.3 Incomplete block experiment

The following experiment was carried out by H. Wolffhechel, KVL, in 1986. The purpose of the experiment was to compare 12 sphagnum lots with respect to water and air content. Each lot was applied to four pots with small cucumber plants. The pots were placed in one of six watering troughs, each containing eight pots. The experimental design and the volume (water and air content), in percent, is given in the following table (dataset available in file sphagnum.txt) for each pot.

|  | Watering trough |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sphagnum lot | 1 | 2 | 3 | 4 | 5 | 6 | Mean |
| 1 | 37.0 |  | 44.6 |  | 42.5 | 47.1 | 42.80 |
| 2 |  |  | 49.0 | 50.5 | 51.0 | 44.8 | 48.83 |
| 3 |  | 34.6 | 42.7 | 41.8 | 37.8 |  | 39.23 |
| 4 | 45.3 | 42.7 | 47.7 | 42.8 |  |  | 44.63 |
| 5 | 32.1 | 38.5 |  | 32.0 |  | 31.6 | 33.55 |
| 6 | 34.3 | 33.3 |  | 34.0 | 22.6 |  | 31.05 |
| 7 | 32.3 |  | 28.1 | 28.1 | 32.3 |  | 30.20 |
| 8 | 38.9 | 36.5 |  | 39.7 |  | 34.8 | 37.48 |
| 9 | 33.9 |  | 31.4 | 32.1 |  | 23.0 | 30.10 |
| 10 |  | 39.7 | 41.8 |  | 43.5 | 33.8 | 39.70 |
| 11 |  | 41.1 | 38.1 |  | 31.1 | 37.9 | 37.05 |
| 12 | 35.9 | 7.5 |  |  | 36.2 | 25.5 | 26.28 |

Construct and validate the additive model for volume, i.e. the model including only the main effects of the two explanatory variables lot and trough:

1. Remember that the variables lot and trough should be used as factors. You can achieve this by using the factor() function in the call to $\operatorname{lm}()$. However, in this exercise it is recommended that you change the type of the variables in the data frame at the beginning of your R code:
```
sphagnum <- read.delim("sphagnum.txt")
sphagnum$lot <- factor(sphagnum$lot)
sphagnum$trough <- factor(sphagnum$trough)
```

2. You probably want to remove the "extreme" observation volume $=7.5$ for (lot, trough $)=$ $(12,2)$. Can you use the validation plots in R to identify the number of this observation?

Find the estimated marginal means of volume for the 12 different sphagnum lots using the additive model. Why are these em-means different from the raw means listed in the above table? Do you prefer the raw means or the em-means? Why?

Remark: The emmeans-package may be used to compute and compare the em-means. The statistical computations done in the emmeans-package are based on standard errors extracted from the model objects. Suppose e.g. that your model is available in an lmobject called m 2 , and try the following R code (and think about what the code does):

```
load library
library(emmeans)
Create and plot em-means
emmeans(m2, ~ lot)
plot(emmeans(m2, ~ lot))
Tukey grouping of em-means
Note: the p-values are adjusted for multiple testing,
but the confidence intervals are not adjusted!
Note: Also needs multcomp-package to be installed
(but not necessarily loaded!)
multcomp::cld(emmeans(m2, ~ lot))
Remark: The author of the emmeans-package, Russell Lenth,
does not like the "compact letter display".
Earlier there was a CLD() in the emmeans-package, but
this functionality has been removed from the package!
Luckily, you may use multcomp::cld() instead!
As a replacement for the CLD() functionality Russell
proposes the following plot. Some may find this
display to be too busy. But what do you think?
pwpp(emmeans(m2, ~ lot))
```

```
An alternative to pwpp() is to find and plot
simultaneous confidence intervals.
Note, however, that replacing hypothesis tests by
looking for overlap between confidence intervals
may be misleading.
confint(emmeans(m2, ~ lot),adjust="tukey")
plot(confint(emmeans(m2, ~ lot),adjust="tukey"))
```

Remark: An alternative is to use the multcomp package. However, the syntax for that package can be much more difficult to learn. It is therefore recommended to use the emmeans package.

## Exercise 4.4 Linear regression

In a field experiment the concentration of phosphorus available for plant growth was measured for each of 18 plants. Furthermore, the concentration of inorganic phosphorus was chemically determined and the concentration of an organic phosphorus component was measured for each plant. The primary interest of the study is to describe the concentration of phosphorus available as a function of the concentrations of inorganic and organic phosphorus. We have the following Table of Variables:

| Variable | Type | Usage |
| :--- | :--- | :--- |
| inorganic | continuous | fixed effect |
| organic | continuous | fixed effect |
| available | continuous | response |

The dataset is shown below, and it is also available in the text file phosphorus.txt:

| inorganic | organic | available |
| :---: | :---: | :---: |
| 0.4 | 53 | 64 |
| 0.4 | 23 | 60 |
| 3.1 | 19 | 71 |
| 0.6 | 34 | 61 |
| 4.7 | 24 | 54 |
| 1.7 | 65 | 77 |
| 9.4 | 44 | 81 |
| 10.1 | 31 | 93 |
| 11.6 | 29 | 93 |
| 12.6 | 58 | 51 |
| 10.9 | 37 | 76 |
| 23.1 | 46 | 96 |
| 23.1 | 50 | 77 |
| 21.6 | 44 | 93 |
| 23.1 | 56 | 95 |
| 1.9 | 36 | 54 |
| 26.8 | 58 | 168 |
| 29.9 | 51 | 99 |

Analyze the data, i.e. answer the generic questions:

- Is there an association?
- What is the association?
- Can the conclusions be trusted?

Hints and suggestions: If you do a multilinear regression of available on inorganic and organic, then one of the observations is not well-modelled. You may either decide to remove this observation (what is the easiest way to do this in R?). Alternatively, you may try a different analysis e.g. by doing a logarithmic transformation of the response variable.
(Reference: Exercise 8.4 from Anders Tolver \& Helle Sørensen: Lecture notes for Applied Statistics.)


[^0]:    ${ }^{1}$ Model validation would reveal that it is better to model the logarithm of the wage but in order not to give the impression that responses should always be log-transformed (which is true!), and also to keep the interpretations of the parameters estimates as simple as possible, we will not transform the response variable. This is ok since the emphasis of this exercise is multicollinearity and not model validity.

[^1]:    ${ }^{2} \mathrm{~A}$ few more suggestions for the identification of multicollinearity may be found in the solution to the exercise.

[^2]:    ${ }^{3}$ The line $\operatorname{par}(\operatorname{mfrow}=c(1,1))$ is only necessary if you did $\operatorname{par}(\operatorname{mfrow}=c(2,2))$ before.

