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Abstract

In this thesis we investigate conditional independence testing in Hilbert spaces with a

particular focus on in�nite-dimensional and separable spaces. We review Shah & Peters'

construction of the Generalised Covariance Measure (GCM) by providing extra details

on the proof of pointwise asymptotic level and of uniform asymptotic level. We also

show that the GCM has pointwise asymptotic level when testing X KK Y | Z for X and

Y univariate real-valued random variables and Z a functional random variable when the

relationship between X and Z and Y and Z can be explained using a scalar-on-function

linear regression model. We then proceed to generalise the GCM to separable Hilbert

spaces (possibly of in�nite dimension), thus constructing the Generalised Hilbert Space

Covariance Measure (GHSCM) and prove that the GHSCM has pointwise asymptotic

level. We show that the GHSCM has pointwise asymptotic level when testingX KK Y | Z

for X,Y and Z functional random variables when the relationship between X and Z

and Y and Z can be explained using a function-on-function linear regression model.

Finally we verify the results in a simulation study where we show that there exists cases

where the GHSCM is better at detecting conditional independence than the GCM.
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Introduction

1.1 Motivation and overview

In this thesis we consider the problem of conditional independence testing for random vari-
ables with values in a Hilbert space. The primary interest is in the separable and in�nite-
dimensional case but the theory will also apply for �nite-dimensional Hilbert spaces. This
problem is not merely of theoretical interest but recent interest in the functional data analysis
paradigm has made the study of in�nite-dimensional random variables all the more relevant.
In this framework, instead of observing n i.i.d. samples of some real-valued random vari-
ables, we observe n curves, that are generated in some way from discrete data (typically
through some form of smoothing). These curves can be viewed as elements of L2r0, 1s or
Cr0, 1s depending on the context and as thus techniques for working with random variables
in in�nite-dimensional spaces are needed.

The interest in developing conditional independence tests has also increased in the last few
decades for a variety of reasons. Conditional independence relations are the fundamental
components of graphical models, that have become applied increasingly often in the realm of
computational statistics [15]. In the �eld of causal inference too, the language of conditional
independence is often found and applied in many foundational algorithms such as the PC
algorithm and also in more modern methods such as invariant prediction. [19]. One could
hope that a conditional independence test for random variables in an in�nite-dimensional
Hilbert space would allow for new developments in causal inference for functional data.

1.2 Outline

The starting point for this thesis is a test of conditional independence for univariate real-
valued random variables; the Generalised Covariance Measure (GCM) as constructed by

� 1 �



1.3 Contributions

Shah & Peters in [25]. We will repeat the development of this test in Chapter 2 and also
introduce some preliminaries from probability theory and test theory. We will also provide
more details on the uniform results given in the original article. The chapter ends with
an explicit conditional independence test when X and Y are univariate real-valued random
variables and Z is a functional variable in L2r0, 1s and where the relationship between X

and Z and Y and Z is assumed to be linear. In Chapter 3 we describe the various properties
of Hilbert spaces including linear functionals and operators on and between Hilbert spaces.
Furthermore we develop a theory of integration for separable Hilbert spaces. In Chapter 4
we develop a framework for probability theory on separable Hilbert spaces including how to
de�ne a random variable on such a space and how to calculate the mean and covariance of such
a random variable. We also touch upon how to de�ne conditional expectations on Hilbert
spaces and give a brief idea of how to de�ne linear models on Hilbert spaces. In Chapter 5
we generalize the GCM to the Hilbertian case and prove that test has pointwise asymptotic
level. We show that we can use the GHSCM to construct a conditional independence test
with pointwise asymptotic level when X, Y and Z are functional random variables and the
relationship between X and Z and Y and Z is linear. Finally a small simulation study is
conducted where the GCM is compared to the GHSCM.

1.3 Contributions

Below is a list of the most signi�cant contributions to the literature:

� Providing further analysis on the proof of uniform asymptotic level for the GCM.

� A novel application of the GCM to the case of testing X KK Y | Z when X and Y are
univariate real-valued and Z is functional.

� A self-contained introduction to Bochner integration and random variables on Hilbert
spaces.

� An extension of the GCM to in�nite-dimensional Hilbert spaces and a proof that the
extensions holds pointwise asymptotic level.

� A novel construction of a test of X KK Y | Z when X, Y and Z are functional.
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Preliminaries, test theory and the Generalised Covariance Measure

In this chapter we give a self-contained description of the Generalised Covariance Measure
for univariate real-valued random variables as originally constructed by Shah & Peters [25].

2.1 Probabilistic preliminaries

We begin by �rst restating some preliminary results, focusing on the de�nitions of indepen-
dence and conditional independence. σ-algebras turn out to be a convenient language to
express these notions in great generality. The appendix contains a summary of measure-
theoretic probability for the uninitiated. Most of the theory and development follows [9] and
[27].

In the following de�nitions we will concentrate on independence and conditional independence
of two σ-algebras or two random variables for brevity but the notions could be expanded to
also include countable or uncountable families of σ-algebras or random variables.

De�nition 2.1.1 (Independence of σ-algebras). Let pΩ,F, P q be a probability space and let
F1 and F2 be sub-σ-algebras of F. If

P pF1 X F2q � P pF1qP pF2q, @F1 P F1, F2 P F2,

we say that F1 is independent of F2 and write F1 KK F2.

In practice we will always work with random variables but independence of random variables
is de�ned through independence of σ-algebras as we shall see. Recall that for a random
variable X de�ned on the probability space pΩ,F, P q with values in the measurable space
X ,Eq, we de�ne σpXq to be the smallest sub-σ-algebra of F, that makes X F�E-measurable,
i.e. for all E P E we have X�1pEq P σpXq. We can write this set explicitly as σpXq �
tX�1pEq | E P Eu or in more probabilistic language we can say that σpXq contains all sets
of the form pX P Eq for E P E.
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2.1 Probabilistic preliminaries

De�nition 2.1.2 (Independence of random variables). Let X and Y be random variables
de�ned on the same probability space pΩ,F, P q with values in the measurable spaces pX ,Eq
and pY,Gq respectively. We say that the random variables X and Y are independent if the
σ-algebras σpXq and σpY q are independent and we write X KK Y .

Remark 2.1.3 (Equivalence of independence de�nitions). Note that independence of the
σ-algebras generated by two random variables X and Y with values in pX ,Eq and pY,Gq
respectively can be written explicitly as

P pX P E, Y P Gq � P pX P EqP pY P Gq, @E P E, G P G,

which is the elementary de�nition of independence of random variables.

The two de�nitions above are compatible in the sense that given two independent random
variables X and Y by de�nition the σ-algebras generated by the variables are independent.
If instead we are given two independent σ-algebras F1 and F2 and construct two random
variablesX and Y into two possibly di�erent measurable spaces such thatX is F1-measurable
and Y is F2-measurable, then it is straightforward to see that X KK Y .

The intuition for independence of random variables is that independent random variables do
not a�ect each other. If X KK Y then knowing something about X does not tell me anything
about Y . We will not go over every property of independent random variable here but we
will note following essential characterization that we are going to use later.

Theorem 2.1.4 (Characterization of independence). Let pΩ,F, P q be a probability space
and X and Y be random variables into the measurable spaces pX ,Eq and pY,Gq respectively.
Then for all f : X Ñ R, g : Y Ñ R Borel measurable and bounded functions we have

EpfpXqgpY qq � EpfpXqqEpgpY qq
if and only if X KK Y .

Proof.

It is easy to see that if X and Y are independent and f and g are measurable then fpXq
and gpY q are independent. By the boundedness of f and g the integrals must exists. The
integrals then split by an application of Fubini's theorem, since independence implies that
the joint distribution of the variables is the product measure of the marginals.

For the converse we can note that indicator functions on all Borel sets are bounded and
measurable and get the result immediately by noting that for any Borel set P pX P Eq �
Ep1Eq (and similarly for Y ) so

P pX P E, Y P Dq � Ep1EpXq1DpY qq � Ep1EpXqqEp1DpY qq � P pX P EqP pY P Dq
as desired.
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2.1 Probabilistic preliminaries

The characterization in Theorem 2.1.4 shows the intimate connections between integrals
(expectations) and independence.

In practice when given two real-valued random variables, we could be interested in knowing
whether the variables are independent or not. One way to rule out independence is by looking
at the covariance of the two variables as the following theorem suggests.

Theorem 2.1.5 (Covariance of independent variables). Let pΩ,F, P q be a probability space
and X and Y be real-valued random variables. Assume that E|X|2   8 and E|Y |2   8. If
X KK Y then CovpX,Y q � 0.

Proof.

The moment assumptions ensure that the integrals in the de�nition of the covariance exist
and then the theorem follows from an argument similar to the one given in Theorem 2.1.4.

The GCM will rely on a conditional variant of the above result, so let us now develop this
theory. Conditional independence is a generalization of independence that is expressed in
the language of conditional expectations as de�ned in the appendix.

Conditional expectations allow us to de�ne conditional probabilities by setting P pF | Dq :�
Ep1F | Dq for any sub-σ-algebra D of F and any F P F. This is analogous to the usual result
that P pF q � Ep1F q. We can now de�ne conditional independence.

De�nition 2.1.6 (Conditional independence of σ-algebras). Let pΩ,F, P q be a probability
space and let F1, F2 and F3 be sub-σ-algebras of F. If

P pF1 X F2 | F3q � P pF1 | F3qP pF2 | F3q, @F1 P F1, F2 P F2,

holds almost surely, we say that F1 is conditionally independent of F2 given F3 and write
F1 KK F2 | F3.

If F4 is a fourth sub-σ-algebra of F, we write F1 KK F2 | F3,F4 as short-hand for F1 KK
F2 | σpF3,F4q.

The de�nition above looks very similar to the de�nition of independence (and does in fact
contain it by setting F3 � tΩ,Hu) but there is also an equivalent de�nition that often
becomes helpful.

Theorem 2.1.7 (Equivalent de�nition of conditional independence). Let pΩ,F, P q be a
probability space and let F1, F2 and F3 be sub-σ-algebras of F. F1 KK F2 | F3 if and only if

P pF1 | F2,F3q � P pF1 | F3q,

for all F1 P F1.
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2.1 Probabilistic preliminaries

Proof.

See the appendix Theorem A.3.1.

We can also consider conditional independence of random variables.

De�nition 2.1.8 (Conditional independence of random variables). Let X and Y be random
variables de�ned on the same probability space pΩ,F, P q with values in the measurable spaces
pX ,Eq and pY,Gq respectively. Let further D be a sub-σ-algebra of F. We say that X is

conditionally independent of Y given D if σpXq KK σpY q | D and write X KK Y | D.
If Z is a third random variable de�ned on the same probability space with values some
measurable space, we de�ne X KK Y | Z to mean X KK Y | σpZq.
If W is a fourth random variable de�ned on the same probability space with values in some
measurable space, we de�ne X KK Y | Z,W to mean X KK Y | σpZ,W q.

The interpretation of conditional independence is slightly more subtle than regular indepen-
dence. If X KK Y | Z, then knowing the outcome of X tells me nothing about the outcome
of Y if we also know the outcome of Z. This intuition can be seen clearly in the equivalent
de�nition of conditional independence given earlier.

To get an idea of how conditional independence of several variables interacts, we will derive
some simple properties of conditional independence.

Theorem 2.1.9 (Fundamental properties of conditional independence). Let pΩ,F, P q be a
probability space and let F1, F2, F3 and F4 be sub-σ-algebras of F. Then

1. F1 KK F2 | F3 ðñ F2 KK F1 | F3 (symmetry)

2. F1 KK pF2,F3q | F4 ùñ F1 KK F2 | F4 ^ F1 KK F3 | F4 (decomposition)

3. F1 KK pF2,F3q | F4 ùñ F1 KK F2 | pF3,F4q (weak union)

4. F1 KK F2 | F3 ^ F1 KK F4 | pF2,F3q ùñ F1 KK pF2,F4q | F3 (contraction)

Proof.

Symmetry is obvious from the de�nition of conditional independence and decomposition is
also straightforward since both F2 and F3 are subsets of σpF2,F3q.
Weak union holds since taking F1 P F1, we get

Ep1F1
| F2,F3,F4q � Ep1F1

| F4q,

by assumption and since also by decomposition F1 KK F3 | F4, we can continue and write

Ep1F1
| F4q � Ep1F1

| F3,F4q,
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2.1 Probabilistic preliminaries

thus proving conditional independence by the equivalent de�nition given earlier. Finally for
contraction, we get

Ep1F1
| F2,F3,F4q � Ep1F1

| F2,F3q � Ep1F1
| F3q,

by F1 KK F4 | pF2,F3q and F1 KK F2 | F3 respectively, again proving conditional independence
by the equivalent de�nition.

It is worthwhile to note that conditional independence is preserved under measurable functi-
ons.

Theorem 2.1.10 (Conditional independence of functions of random variables). Let X and
Y be random variables de�ned on the same probability space pΩ,F, P q with values in the
measurable spaces pX ,Eq and pY,Gq respectively. Let further D be a sub-σ-algebra of F and
f : X Ñ X̃ and g : Y Ñ Ỹ be measurable functions into the measurable spaces pX̃ , Ẽq and
pỸ, G̃q respectively. If X KK Y | D, then fpXq KK gpY q | D.

Proof.

Note that any F P σpfpXqq is of the form pfpXq P Eq for some E P Ẽ, which is equivalent
to pX P f�1pEqq. Measurability of f implies that f�1pEq P E, so the set pX P f�1pEqq
is in σpXq. A similar argument can be performed on sets in σpgpY qq. This proves the
result since we know that sets in σpXq and σpY q satisfy the criterion required for conditional
independence.

Just as it was done for independence, we can characterize conditional independence.

Theorem 2.1.11 (Characterization of conditional independence). Let X and Y be random
variables de�ned on the same probability space pΩ,F, P q with values in the measurable spaces
pX ,Eq and pY,Gq respectively. Let further D be a sub-σ-algebra of F. Then for all f : X Ñ R,
g : Y Ñ R Borel measurable and bounded functions we have

EpfpXqgpY q | Dq � EpfpXq | DqEpgpY q | Dq

if and only if X KK Y | D.

Proof.

See [5] Proposition 2.3.28.

We can use the characterization in Theorem 2.1.11 to show that the conditional expecta-
tion of a product of integrable real-valued variables factorizes when they are conditionally
independent.
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2.1 Probabilistic preliminaries

Theorem 2.1.12 (Conditional expectation of conditionally independent variables factori-
zes). Let X and Y be real-valued random variables de�ned on the same probability space
pΩ,F, P q. Let further D be a sub-σ-algebra of F. Assume that X, Y and XY are integrable.
Then if X KK Y | D,

EpXY | Dq � EpX | DqEpY | Dq.

Proof.

Note that we can de�ne a sequence of bounded and measurable functions fnpxq � 1p|x|¤nqpxq
such that fn converges to the identity. It is straightforward to see that fnpxyq � fnpxqfnpyq.
Then

EpXY | Dq � E
�

lim
nÑ8 fnpXY q | D

	
� lim
nÑ8EpfnpXY q | Dq,

by the conditional dominated convergence theorem since fnpXY q is bounded by XY which
is integrable by assumption. Continuing we get by conditional independence and the boun-
dedness of fn

lim
nÑ8EpfnpXY q | Dq � lim

nÑ8EpfnpXqfnpY q | Dq � lim
nÑ8EpfnpXq | DqEpfnpY q | Dq.

By again applying the conditional dominated convergence theorem (see Theorem A.1.26)
since fnpXq is bounded by integrable X and similarly for Y , we get the desired result.

In practice when we are given three real-valued random variables X, Y and Z, we would like
to �nd a way to determine whether X KK Y | Z. To that end we can de�ne a conditional
variant of covariance.

De�nition 2.1.13 (Conditional covariance). Let X and Y be real-valued random variables
de�ned on a probability space pΩ,F, P q and let D be a sub-σ-algebra of F. Assume that
E|X|2   8 and E|Y |2   8. We de�ne the conditional covariance of X and Y given D as

CovpX,Y | Dq � E prX � EpX | DqsrY � EpY | Dqs | Dq .

Applying simple laws for conditional expectations reveals that

CovpX,Y | Dq � EpXY | Dq � EpX | DqEpY | Dq.

Note that the conditional covariance is a random variable and not simply a real number.
Just as the covariance of independent random variables is zero the conditional covariance of
conditionally independent random variables is also zero.

Theorem 2.1.14 (Conditional covariance of conditionally independent variables). Let X
and Y be real-valued random variables de�ned on a probability space pΩ,F, P q and let D be
a sub-σ-algebra of F. Assume that E|X|2   8 and E|Y |2   8. Then if X KK Y | D we have
CovpX,Y | Dq � 0.
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2.1 Probabilistic preliminaries

Proof.

Follows immediately from 2.1.12.

The following theorem forms the basis of the GCM.

Theorem 2.1.15 (Product of residuals of conditionally independent variables is zero). Let
X and Y be real-valued random variables de�ned on a probability space pΩ,F, P q and let D
be a sub-σ-algebra of F. Assume that E|X|2   8 and E|Y |2   8.

De�ne the residuals ε � X � EpX | Dq and ξ � Y � EpY | Dq.
Then if X KK Y | D we have Epξεq � 0.

Proof.

Note that by the tower property it is su�cient to show that Epεξ | Dq � 0. This is know
immediate from the de�nition of the conditional cross-covariance and Theorem 2.1.14, since

Epεξ | Dq � EprX � EpX | DqsrY � EpY | Dqs | Dq � CovpX,Y | Dq.

When given n i.i.d. observations of three random variables X, Y and Z, the GCM will be
based on estimating the conditional expectations of X given Z and Y given Z, forming the
residuals and testing whether the mean of the product of the residuals is zero. By Theorem
2.1.15 if that is not the case, X and Y are not conditionally independent given Z. We will
expand on this later.

We can in fact generalize Theorem 2.1.15 to give yet another characterization of conditional
independence.

Theorem 2.1.16 (Daudin's lemma). Let X, Y and Z be real-valued random variables
de�ned on a probability space pΩ,F, P q. Then X KK Y | Z if and only if

EpfpX,ZqgpY,Zqq � 0

for all f, g measurable and real-valued with EpfpX,Zq | Zq � EpgpY,Zq | Zq � 0, EpfpX,Zq2q  
8 and EpgpY, Zq2q   8.

Proof.

A proof is given in [7], where the conditional independence statement X KK Y | Z is de�ned as
EpfpX,ZqgpY, Zq | Zq � EpfpX,Zq | ZqEpgpY,Zq | Zq. Using the de�nitions of this thesis,
this would be pX,Zq KK pY,Zq | Z but we show in Theorem A.3.2 that this is equivalent to
assuming X KK Y | Z.
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2.1 Probabilistic preliminaries

Daudin's lemma is a strengthening of Theorem 2.1.15, since ε and ξ are examples of square
integrable functions with conditional mean zero. Using Theorem 2.1.15 to construct a test,
we would not be able to detect all cases of conditional dependence but Daudin's lemma
states that if we performed the test on all possible transformations of the random varia-
bles, we would be able to detect all cases of conditional dependence. This is a theoretical
consideration, since of course such a test would not be possible in practice.

The standard modes of convergence of sequences of real-valued random variables are revised
in the appendix. We will also apply some uniform variants of convergence for families of
sequences of random variables.

De�nition 2.1.17 (Uniform convergence of random variables). Let pΩ,F, P q be a probability
space and let Θ be some parameter space (think of Θ being a subset of Rd or even a set of
probability measures). Let further pXn,θqnPN,θPΘ be a family of real-valued random variables
de�ned on pΩ,F, P q. Let pXθqθPΘ be another family of real-valued random variables. Then

1. If for every ε ¡ 0, we have

lim
nÑ8 sup

θPΘ
P p|Xn,θ �Xθ| ¥ εq � 0,

we say that Xn,θ converges to Xθ in probability uniformly in θ and write Xn,θ

P
ÑΘ Xθ.

2. If for every bounded, continuous, real-valued function f : RÑ R, we have

lim
nÑ8 sup

θPΘ
|EpfpXn,θqq � EpfpXθqq| � 0,

we say that Xn,θ converges to Xθ in distribution uniformly in θ and write Xn,θ

D
ÑΘ Xθ.

We will sometimes omit the subscripted Θ from the notation when it is clear from the context.
We will also abuse notation slightly and write Xn,θ Ñ X where X is a single random variable,
by which we mean that Xn,θ converges uniformly to the family Xθ � X for all θ P Θ.

Each family pXn,θqnPN,θPΘ is often thought of as a sequence for each θ, i.e. for each θ0 P Θ,
we would consider pXn,θ0qnPN when usually thinking about convergence of random variables.
The uniform de�nitions allow us to consider what happens to convergence across multiple
possible distributions of a sequence simultaneously.

It is quite easy to see that convergence in distribution uniformly in θ implies convergence
in distribution for every θ and similarly for convergence in probability. These forms of
convergence turn out to be a natural language to phrase various requirements on tests to
ensure that they are uniformly well-behaved across all possible distributions.
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2.1 Probabilistic preliminaries

Uniform convergence is preserved under continuous transformations as seen in the following
theorem.

Theorem 2.1.18 (Uniform continuous mapping theorem). Let pΩ,F, P q be a probability
space, let Θ be some parameter space and let pXn,θqnPN,θPΘ be a family of real-valued random
variables de�ned on pΩ,F, P q. Let pXθqθPΘ be another family of real-valued variables on the

same space and assume that Xn,θ

D
ÑΘ Xθ. Let h : RÑ R be a continuous mapping. Then

hpXn,θq
D
ÑΘ hpXθq.

Proof.

Note that if f is a continuous, bounded and real-valued function, then so is f � h, thus the
result follows immediately.

Many of the usual properties of convergence in distribution boil down to the question of
whether a given sequence or family is tight.

De�nition 2.1.19 (Tightness of a family of random variables). Let pΩ,F, P q be a probability
space and let XaPA be a family of real-valued random variables on pΩ,F, P q indexed by the
set A. We say that XaPA is tight if for all ε ¡ 0, there exists some M ¡ 0 so that

sup
aPA

P p|Xa| ¡Mq   ε.

Both a single measure and any sequence of random variables converging in distribution are
tight, which is applied when proving theorems such as Slutsky's theorem. Neither a single
family pXθqθPΘ nor a family pXn,θqnPN,θPΘ converging uniformly in distribution are a priori
tight. Finding assumptions guaranteeing tightness is non-trivial but assuming that that for
each n P N the family pXn,θqθPΘ and pXθqθPΘ are tight is su�cient to prove a version of
Slutsky's theorem.

Lemma 2.1.20 (Tightness of uniformly convergent sequence). Let pΩ,F, P q be a probability
space, let Θ be some parameter space and let pXn,θqnPN,θPΘ be a family of real-valued random
variables de�ned on pΩ,F, P q. Let pXθqθPΘ be another family of real-valued variables on the
same space and assume that for each n P N the family pXn,θqθPΘ and pXθqθPΘ are tight.

Then if for every bounded, uniformly continuous, real-valued function f : RÑ R, we have

lim
nÑ8 sup

θPΘ
|EpfpXn,θqq � EpfpXθqq| � 0,

the family pXn,θqnPN,θPΘ is tight.
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2.1 Probabilistic preliminaries

Proof.

See [27] Lemma 3.1.6 for a proof in the non-uniform case and note that the extra assumptions
of tightness of pXn,θqθPΘ and pXθqθPΘ allow for the proof to also hold in the uniform case.

This lets us conclude that it is su�cient to consider uniformly continuous test functions when
proving uniform convergence in distribution.

Theorem 2.1.21 (Uniform convergence in distribution and uniform continuity). Let pΩ,F, P q
be a probability space, let Θ be some parameter space and let pXn,θqnPN,θPΘ be a family of
real-valued random variables de�ned on pΩ,F, P q. Let pXθqθPΘ be another family of real-
valued variables on the same space and assume that for each n P N the family pXn,θqθPΘ and

pXθqθPΘ are tight. Then Xn,θ

D
ÑΘ Xθ if and only if for every bounded, uniformly continuous,

real-valued function f : RÑ R, we have

lim
nÑ8 sup

θPΘ
|EpfpXn,θqq � EpfpXθqq| � 0.

Proof.

See [27] Theorem 3.1.7 for a proof in the non-uniform case and the proof then follows in the
uniform case applying Lemma 2.1.20 instead of the non-uniform version in the proof.

We will apply Theorem 2.1.21 to prove Slutsky's lemma.

Theorem 2.1.22 (Slutsky's lemma for uniform convergence). Let pΩ,F, P q be a probability
space, let Θ be some parameter space and let pXn,θqnPN,θPΘ and pYn,θqnPN,θPΘ be two families
of real-valued random variables de�ned on pΩ,F, P q. Let pXθqθPΘ be another family of real-
valued variables on the same space and assume that for each n P N the family pXn,θqθPΘ and

pXθqθPΘ are tight. Assume further that Xn,θ

D
Ñ Xθ and Yn,θ

P
Ñ 0. Then

Xn,θ � Yn,θ
D
Ñ Xθ.

Proof.

By Theorem 2.1.21 it su�ces to prove

sup
θPΘ

|EpfpXn,θ � Yn,θqq � EpfpXθqq| Ñ 0

as nÑ8 for all bounded, uniformly continuous real-valued functions f .

Note that

sup
θPΘ

|EpfpXn,θ � Yn,θqq � EpfpXθqq|

¤ sup
θPΘ

|EpfpXn,θ � Yn,θqq � EpfpXn,θqq| � sup
θPΘ

|EpfpXn,θqq � EpfpXθqq|
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and the second term goes to 0 by assumption, so it su�ces to show that the �rst term goes
to 0. By the triangle inequality for integrals and linearity of the integral we get

sup
θPΘ

|EpfpXn,θ � Yn,θqq � EpfpXn,θqq| ¤ sup
θPΘ

E|fpXn,θ � Yn,θq � fpXn,θq|.

For any ε ¡ 0, we can �nd δ ¡ 0 from the uniform continuity of f so that |fpx�yq�fpxq|   ε

for all |y|   δ. This lets us partition the integral into a region where |Yn,θ| ¤ δ (and thus
where |fpXn,θ�Yn,θq�fpXn,θq| ¤ ε) and a region where |Yn,θ| ¡ δ. We get by also applying
the triangle inequality to the second integral that

sup
θPΘ

E|fpXn,θ � Yn,θq � fpXn,θq| ¤ ε� sup
θPΘ

Er1p|Yn,θ|¡δqp|fpXn,θ � Yn,θq| � |fpXn,θ|qs

¤ ε� sup
θPΘ

2‖f‖8P p|Yn,θ| ¡ δq,

where ‖f‖8 � supxPR fpxq, which is �nite by assumption, so the second term can be made
arbitrarily small by choosing a large enough n. Since ε was arbitrary, we are done.

Unfortunately we are not able to continue this development and generalize to the usual
Slutsky's theorem under the assumptions given here. Bengs and Holzmann use stronger
assumptions in [1] to get the following result.

Theorem 2.1.23 (Slutsky's theorem for uniform convergence). Let pΩ,F, P q be a probability
space, let Θ be some parameter space and let pXn,θqnPN,θPΘ and pYn,θqnPN,θPΘ be two families
of real-valued random variables de�ned on pΩ,F, P q. Let pXθqθPΘ be another family of real-
valued variables on the same space, let pyθqθPΘ be a family of real numbers and assume that

Xn,θ

D
Ñ Xθ and Yn,θ

P
Ñ yθ.

Assume further that the family of measures pXθpP qqθPΘ is uniformly absolutely continuous
with respect to some continuous probability measure Q on pR,Bq, i.e. for any ε ¡ 0, there
exists δ ¡ 0, such that for any B P B with QpBq   δ we have

sup
θPΘ

P pXθ P Bq   ε.

Then
Xn,θ � Yn,θ

D
Ñ Xθ � yθ

and
Xn,θYn,θ

D
Ñ Xθyθ.

Proof.

See [1] Theorem 6.3.
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We will solely apply this full version of Slutsky's theorem in the case where Xθ is a family of
normal distributions with mean zero and bounded variances and we now prove that such a
family is in fact uniformly absolutely continuous with respect to a continuous measure on R.

Theorem 2.1.24 (Mean zero normal distributions are uniformly absolutely continuous).
Let pΩ,F, P q be a probability space, let Θ be some parameter space and let pXθqθPΘ be a
family of real-valued random variables. Let σpθq be a function such that σpθq is bounded
and bounded away from zero for all θ and assume that Xθ � N p0, σpθq2q. Then we assume
that pXθqθPΘ is uniformly absolutely continuous with respect to some continuous probability
measure on pR,Bq.

Proof.

Let σ2
sup :� supθPΘ σ

2pθq and σ2
inf similarly. We intend to show that the family pPθqθPΘ �

pXθpP qqθPΘ is uniformly absolutely continuous with respect to the measure Q � N p0, σ2
supq.

To that end let ε ¡ 0 be given and choose �rst M ¡ 0 from the tightness of Q so that

Qpr�M,M scq   ε

2
.

Note �rst that Pθpr�M,M scq ¤ Qpr�M,M scq for any θ. We can see this by arguing that
Pθpr�M,M sq ¥ Qpr�M,M sq, which can be seen by performing integration by substitution

Pθpr�M,M sq �
» M
�M

1a
2πσpθq2 e

�x2

2σ2pθq dx �
» σ2sup

σ2pθq
M

� σ2sup

σ2pθq
M

1b
2πσ2

sup

e
�u2

2σ2sup du ¥ Qpr�M,M sq,

where the �nal equality is due to
σ2
sup

σ2pθq ¥ 1. Note also that if QpAq   δ for some δ ¡ 0 then
mpAX r�M,M sq   δ

ϕQpMq where m denotes the Lebesgue measure and ϕQ is the density of
Q. This has to holds since if not then

QpAq ¥ QpAX r�M,M sq �
»
AXr�M,Ms

ϕQpxq dx ¥ ϕQpMqmpAX r�M,M sq ¥ δ

since ϕQpMq is the smallest value that ϕQ attains over r�M,M s. Let C � supθPΘ ϕθp0q
where ϕθ is the density of Pθ with respect to the Lebesgue measure and set δ � min

�
ε
2 ,

ε
2
ϕQpMq
C

	
.

Then for any θ P Θ and A P B with QpAq   δ, we have

PθpAq � PθpAX r�M,M scq � PθpAX r�M,M sq ¤ Qpr�M,M scq � CmpAX r�M,M sq

¤ ε

2
� δ

ϕQpMqC ¤ ε

�nishing the proof.
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We have a version of the Law of Large numbers in the context of uniform convergence.

Theorem 2.1.25 (Uniform Law of Large Numbers). Let pΩ,F, P q be a probability space,
let Θ be some parameter space and let pXθqθPΘ be a real-valued family of random variables
de�ned on pΩ,F, P q. Assume that there exists η ¡ 0 so that supθPΘE|Xθ|1�η   8 and let
µpθq � EpXθq. Let pXn,θqnPN,θPΘ be a family of real-valued random variables such that for
each θ0 P Θ the sequence pXn,θ0qnPN is independent and with the same distribution as Xθ0 .
Then

1

n

ņ

i�1

Xi,θ

P
ÑΘ µpθq.

Proof.

Assume without loss of generality that µpθq � 0, since if the result holds, we can instead
consider X̃n,θ � Xn,θ � µpθq.
Let ε ¡ 0 be given and note that for every M ¡ 0, we can write

sup
θPΘ

P

������ 1n
ņ

i�1

Xi,θ

����� ¥ ε

�

¤ sup
θPΘ

P

������ 1n
ņ

i�1

Xi,θ1p|Xi,θ|¤Mq

����� ¥ ε

�
� sup
θPΘ

P

������ 1n
ņ

i�1

Xi,θ1p|Xi,θ|¡Mq

����� ¥ ε

�
.

For the �rst term, note that by 1� η-order Markov's inequality, the triangle inequality and
the i.i.d nature of Xn,θ for each θ yields

sup
θPΘ

P

������ 1n
ņ

i�1

Xi,θ1p|Xi,θ|¤Mq

����� ¥ ε

�
¤ sup

θPΘ

EpX1�η
θ 1p|Xθ|¤Mqq
nηε1�η ¤ M1�η

nηε1�η .

For the second term, by the the arguments as above but using �rst order Markov's inequality,
we get

sup
θPΘ

P

������ 1n
ņ

i�1

Xi,θ1p|Xi,θ|¡Mq

����� ¥ ε

�
¤ sup

θPΘ

Ep|Xθ|1p|Xθ|¡Mqq
ε

.

Using Hölder's inequality on the integral, we get

Ep|Xθ|1p|Xθ|¡Mq ¤ Ep|Xθ|1�ηqP p|Xθ| ¡Mq 1�η
η .

We can bound the probability by Markov's inequality once again and get

P p|Xθ| ¡Mq ¤ E|Xθ|
M

,
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which implies that

sup
θPΘ

P

������ 1n
ņ

i�1

Xi,θ1p|Xi,θ|¡Mq

����� ¥ ε

�
¤ 1

εM p1�ηq{η sup
θ
Ep|Xθ|1�ηqEp|Xθ|qp1�ηq{η.

We can thus choose M su�ciently large to ensure that the second term is small and then
choose n su�ciently large, so that the �rst term becomes small.

We also have a central limit theorem.

Theorem 2.1.26 (Uniform Central Limit Theorem). Let pΩ,F, P q be a probability space,
let Θ be some parameter space and let pXθqθPΘ be a real-valued family of random variables
de�ned on pΩ,F, P q. Assume that there exists η ¡ 0 so that supθPΘE|Xθ|2�η   8 and let
µpθq � EpXθq and σ2pθq � VarpXθq. Assume further that infθ σ

2pθq ¡ 0. Let pXn,θqnPN,θPΘ

be a family of real-valued random variables such that for each θ0 P Θ the sequence pXn,θ0qnPN
is independent and with the same distribution as Xθ0 . Then

1?
n

ņ

i�1

pXi,θ � µpθqq D
ÑΘ N p0, σ2pθqq.

Proof.

We can assume that µpθq � 0, since otherwise we consider the variables X̃n,θ � Xn,θ � µpθq.
De�ne

Wn,θ � 1?
n

ņ

i�1

pXi,θ � µpθqq

and Zθ � N p0, σ2pθq.
Note that to show uniform convergence in distribution, it is su�cient to show that for every
sequence pθnqnPN in Θ, we have

|EpfpWn,θnqq � EpfpZθnqq| Ñ 0

as nÑ8. This holds since if

sup
θPΘ

|EpfpWn,θqq � EpfpZθqq| �Ñ 0

as nÑ8, there would exist ε ¡ 0 and sequences pθkqkPN and pnkqkPN so that

|EpfpWnk,θkqq � EpfpZθkqq| ¥ ε

for all k P N.
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Take any sequence pθnqnPN in Θ and de�ne

Ynk � 1?
n

Xk,θk

σpθkq

for n P N and 1 ¤ k ¤ n and

Sn �
ņ

k�1

Ynk � 1?
n

ņ

i�1

Xi,θi

σpθiq .

pYnkq1¤k¤n satis�es the conditions of Lyapounov's CLT (see Theorem A.1.20). The rows
are independent and centered and the variance of Sn is 1 by construction. The Lyapounov
condition is satis�ed since

lim
nÑ8

ņ

k�1

E|Ynk|2�η � lim
nÑ8

1?
n
η

1

n

ņ

k�1

E|Xk,θk |2�η
σ2�ηpθkq

¤ lim
nÑ8

1?
n
η

1

infθPΘ σ2�ηpθq sup
θPΘ

E|Xθ|2�η Ñ 0

as nÑ8.

The above shows that convergence holds for all sequence i.e. that

1?
n

ņ

i�1

Xi,θ

σpθq
D
Ñ N p0, 1q.

Applying Theorem 2.1.23 with Assumption 2.1.24 will give the desired result, which we can
do since the moment conditions given imply tightness by Markov's inequality.

The approach for uniform convergence results given here is not unique and other approaches
using di�erent assumptions to account for tightness can be seen in [1] as mentioned ealier or
in [14].

In addition to the properties of uniform convergence derived above, when proving the asymp-
totic properties of the GCM, we will need the following lemmas.

Lemma 2.1.27. Let pΩ,F, P q be a probability space, let Θ be some parameter space and
let further pXn,θqnPN,θPΘ be a family of real-valued random variables de�ned on pΩ,F, P q. If
Xn,θ

P
Ñ 0 and there exists C ¡ 0 such that |Xn,θ|   C for all n P N and θ P Θ, then

sup
θPΘ

Ep|Xn,θ|q Ñ 0

as nÑ8.
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Proof.

Let ε ¡ 0 be given. Note that

sup
θPΘ

Ep|Xn,θ|q ¤ sup
θPΘ

E
�|Xn,θ|1p|Xn,θ| ε{2q

�� sup
θPΘ

E
�|Xn,θ|1p|Xn,θ|¥ε{2q

�
¤ ε

2
� C sup

θPΘ
P p|Xn,θ| ¥ ε{2q.

By assumption for any η ¡ 0, we can choose N P N so that for all n ¥ N , we can make
supθPΘ P p|Xn,θ| ¥ ε{2q   η . Thus choosing N to parry η � ε

2C , we get

sup
θPΘ

Ep|Xn,θ|q   ε.

Since ε was arbitrary, we get the desired result.

Lemma 2.1.28. Let pΩ,F, P q be a probability space, let Θ be some parameter space and
let further pXn,θqnPN be a family of real-valued random variables de�ned on pΩ,F, P q. Let
pXθqθPΘ be another family of real-valued random variables and let pFn,θqnPN,θPΘ be a family

of sub-σ-algebras of F. If Ep|Xn,θ| | Fn,θq
P
ÑΘ 0 then Xn,θ

P
ÑΘ 0.

Proof.

Let ε ¡ 0 be given and note that by Markovs inequality

sup
θPΘ

P p|Xn,θ| ¥ εq ¤ sup
θPΘ

P p|Xn,θ| ^ ε ¥ εq ¤ sup
θPΘ

Ep|Xn,θ| ^ εq
ε

.

We will be done, if we can show that supθPΘEp|Xn,θ| ^ εq Ñ 0 as n Ñ 8. Note that by
monotonicity of conditional expectations, for each θ P Θ we have

|Xn,θ| ^ ε ¤ ε ùñ Ep|Xn,θ| ^ ε | Fn,θq ¤ Epε | Fn,θq � ε,

and
|Xn,θ| ^ ε ¤ |Xn,θ| ùñ Ep|Xn,θ| ^ ε | Fn,θq ¤ EpXn,θ | Fn,θq.

Combining both of the above expressions, we get

Ep|Xn,θ| ^ ε | Fn,θq ¤ Ep|Xn,θ| ^ ε | Fn,θq ^ ε.

This lets us write by the tower property and monotonicity of integrals

sup
θPΘ

Ep|Xn,θ| ^ εq � sup
θPΘ

EpEp|Xn,θ| ^ ε | Fn,θqq ¤ sup
θPΘ

EpEp|Xn,θ| | Fn,θq ^ εq.

Now the conclusion follows from the assumptions and Lemma 2.1.27 since Ep|Xn,θ| | Fn,θq^ε
goes to 0 in probability uniformly in θ P Θ and is bounded by ε.
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2.2 Statistical models and test theory

In this section, we present the fundamentals of statistical models and test theory. We will
mainly follow the development in [8] and [13].

In statistics we observe the outcome of some random variable X with values in a set X ,
which has unknown distribution XpP q (XpP q is the push-forward measure of P under X). A
statistical model consists of a set of possible distributions for X and we attempt to determine
which of these distributions are acceptable (or rather which are unacceptable) for the random
phenomenon that is being modelled.

De�nition 2.2.1 (Statistical model). A statistical model consists of a sample space, X , a
σ-algebra de�ned on X , E, and a set of probability measures on pX ,Eq, P.
Remark 2.2.2 (Observations and sampling assumptions). Throughout this thesis we will
always work under the assumption of i.i.d. sampling. We will assume that we observe a
sequence pxiqiPN of observations from a sequence of independent and identically distributed
copies of X, pXiqiPN. We let Xpnq denote the joint distribution of the �rst n of these copies.

A simple example of a statistical model is X � Rd for some d P N, E as the Borel σ-algebra
on Rd and P as the set of normal distributions on Rd with unknown mean and covariance.

To draw inference i.e. deciding if there are some ν P P that match observation more than
others, statisticians work with the concept of a hypothesis.

De�nition 2.2.3 (Hypothesis). Let pX ,E,Pq be a statistical model. A hypothesis, H0, is
a subset P0 of the full family of probability measures, P. The alternative hypothesis, H1,
to H0 is the complement P1 � PzP0. A hypothesis is called simple if it consists of a single
measure and composite otherwise.

The interpretation of a hypothesis is that the true data-generating mechanism is in the set
P0. Most of classical statistics is built upon the idea of observing an outcome, choosing a
suitable model and constructing hypotheses within the model to predict and understand the
phenomenon. To formalize the process of accepting and rejecting hypotheses, statisticians
work with concept of a test.

De�nition 2.2.4 (Test of hypothesis). Let pX ,E,Pq be a statistical model and H0 a hypot-
hesis. We de�ne a test as a sequence of partitions of Xn into an acceptance region An and a
critical region Ac

n. This partition is also expressed through the sequence of critical functions
ψn : Xn Ñ t0, 1u given by

ψnpxq �
$&%0 if x P An

1 if x P Ac
n

.
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A test is either pAnqnPN or equivalently pψnqnPN.

We will refer to both An and ψn as tests, however we will primarily use the functional de�-
nition. Given a sample of size n from a statistical model and when considering a hypothesis,
we simply apply the n'th critical function to the observation and if ψnpxq � 0, we accept the
hypothesis and if ψnpxq � 1 we reject it.

The de�nition above is abstract and allows for poor tests (we could for instance reject or
accept everything and this would still be valid tests). We now de�ne some properties of tests
that helps us determine whether they are useful in testing a hypothesis.

De�nition 2.2.5 (Properties of tests). Let pψnqnPN be a sequence of tests of a hypothesis
with null set of probability measures P0. For a given level α P p0, 1q, we say that

1. the sequence pψnqnPN has valid level if for every n

sup
νPP0

Pνpψn � 1q ¤ α,

2. the sequence pψnqnPN has uniformly asymptotic level if

lim sup
nÑ8

sup
νPP0

Pνpψn � 1q ¤ α,

3. the sequence pψnqnPN has pointwise asymptotic level if

sup
νPP0

lim sup
nÑ8

Pνpψn � 1q ¤ α,

where Pν is short-hand for the probability assuming that XpP q � ν.

A test holding level is a way of ensuring, that we do not reject true hypotheses too often.
Some of these properties imply each other as the following theorem shows.

Proposition 2.2.6 (Relations between properties of tests). Let pX ,E,Pq be a statistical
model, let H0 be a hypothesis and let pψnqnPN be a sequence of tests for the hypothesis.

1. If the sequence pψnqnPN has valid level, then it also has uniformly asymptotic level.

2. If the sequence pψnqnPN has uniformly asymptotic level then it also has pointwise asymp-
totic level.

Proof.
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1. Trivial, since lim sup respects inequalities.

2. Let

mn � sup
νPP0

Pνpψn � 1q.

Then clearly Pνpψn � 1q ¤ mn for every n and ν. Thus since lim sup respects inequa-
lities

lim sup
nÑ8

Pνpψn � 1q ¤ lim sup
nÑ8

mn,

and since the above inequality holds for every ν, it also holds for the supremum i.e.

sup
νPP0

lim sup
nÑ8

Pνpψn � 1q ¤ lim sup
nÑ8

mn,

and since the right-hand side is less than α by assumption, we are done.

The motivation for de�ning the level of a test is to ensure that if we have a su�ciently large
sample size, we can bound the probability that we reject H0 falsely. Note however that the
de�nition of pointwise asymptotic level yields that for any ν P P0 and any ε ¡ 0, we can �nd
N P N such that for all n ¥ N , we have Pνpψn � 1q ¤ α � ε. In particular the choice of N
is dependent on ν.

If we have uniformly asymptotic level, we get that for each ε ¡ 0, there exists some N P N
such that the largest probability Pνpψn � 1q is less than ε�α. In other words we can choose
a threshold ε and then by working backwards, we can be sure that the actual level is within
the threshold for all ν P P0 simultaneously.

The following is an example of a test that does not have uniform asymptotic level.

Example 2.2.7 (Pointwise vs. uniform asymptotic level). This example is based on a similar
example in [17]. Consider the statistical model consisting of all distributions on R with �nite
variance and the hypothesis that the distribution has mean zero. We consider the sequence
of tests given by

ψnpxq �
$&%1 if x̄

?
n

pσ ¡ z1�α

0 otherwise
,

where x̄ is the empirical mean of x, pσ is the unbiased estimate of the standard deviation of
x and z1�α is the 1� α quantile of the normal distribution. Note for any ν P P0

Pνpψn � 1q Ñ P pZ ¡ z1�αq � α,
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as nÑ8 since the central limit theorem yields that X̄
?
n

pσ Ñ Z as nÑ8 where Z � N p0, 1q.
Since the convergence holds for every ν it also holds for the supremum and thus

sup
νPP0

lim sup
nÑ8

Pνpψn � 1q � α,

proving that the sequence of tests has pointwise asymptotic level.

This test does not achieve uniform asymptotic level since for any n and any c P p0, 1q, we
can �nd a distribution ν P P0 such that Pνpψn � 1q ¥ c. To do this consider the distribution
that puts mass 1� p on p and mass p on �p1� pq. Clearly this distribution has mean zero
and �nite variance so it is in P0.

Note that if given a sample x of size n from this distribution, the probability that all xi � p

is p1� pqn. If given such an observation, pσ � 0 and x̄ is positive so ψnpxq � 1. This implies
that Pνpψn � 1q ¥ p1 � pqn and choosing p � 1 � c1{n shows that Pνpψn � 1q ¥ c thus we
do not have uniform asymptotic level.

Having de�ned tests we can turn to the problem of constructing them. A common strategy
is to transform the sequence of observations in some way that has the same distribution for
all ν P P. This leads to the de�nition of a test statistic.

De�nition 2.2.8 (Test statistics). Let pX ,E,Pq be a statistical model and pgnqnPN be a
sequence of functions where gn : Xn Ñ R. Let furthermore P0 � P.

1. If for all n P N, gnpXpnqq has the same continuous distribution for all ν P P0, we say
that pgnqnPN is a test statistic with respect to P0.

2. If gnpXpnqq converges in distribution to the same continuous distribution for all ν P P0,
we say that pgnqnPN is an asymptotic test statistic with respect to P0.

3. If gnpXpnqq converges in distribution uniformly over P0 to the same continuous dis-
tribution, we say that pgnqnPN is a uniform asymptotic test statistic with respect to

P0.

Remark 2.2.9 (Continuity of test statistic distributions). In the de�nition above we have
assumed that the (limiting) distributions of the test statistics are continuous. There is no
a priori reason for this but it simpli�es many of the upcoming proofs and considerations.
Continuity of the distributions allows us to always �nd sets of arbitrary probability and for
us not to discern between open and closed sets. To the best of the authors knowledge, most of
the following results still hold if this assumption was omitted (with modi�cations to account
for the possibility of point masses).
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Using test statistics as de�ned above we can create tests.

De�nition 2.2.10 (Tests from test statistics). Let pX ,E,Pq be a statistical model and
pψnqnPN be a sequence of tests of a hypothesis H0 (with associated null-set of probability
measures P0). Let further α P p0, 1q.

1. If pgnqnPN is a test statistic with respect to P0, we can �nd a sequence of sets pBnqnPN
such that P pgnpXpnqq P Bnq � α. From this we de�ne a sequence of tests pψnqnPN by

ψnpxpnqq �
$&%1 if gnpxpnqq P Bn

0 otherwise
.

Any such sequence of tests is called a test constructed from the test statistic pgnqnPN of

level α.

2. If pgnqnPN is a (uniform) asymptotic test statistic with respect to P0, we can �nd a set
B such that P pV P Bq � α where V is a random variable with the same distribution as
the limiting distribution of the asymptotic test statistic. We can then de�ne a sequence
of tests pψnqnPN by

ψnpxpnqq �
$&%1 if gnpxpnqq P B

0 otherwise
.

Any such sequence of tests is called a test constructed from the (uniform) asymptotic

test statistic pgnqnPN of level α.

Most well-known statistical tests are constructed in one of the ways described above. This
way of constructing tests allows us to immediately deduce various properties of the resulting
tests.

Theorem 2.2.11 (Properties of tests from test statistics). Let pX ,E,Pq be a statistical
model, α P p0, 1q and pψnqnPN be a sequence of tests of a hypothesis H0 (with associated
null-set of probability measures P0) of level α.

1. If pψnqnPN is constructed from a test statistic then pψnqnPN has valid level.

2. If pψnqnPN is constructed from an asymptotic test statistic then pψnqnPN has pointwise
asymptotic level.

3. If pψnqnPN is constructed from a uniform asymptotic test statistic then pψnqnPN has
pointwise asymptotic level.
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2.3 Univariate GCM

Proof.

1. Let pgnqnPN denote the test statistic. Note that for every ν P P0 and n P N

Pνpψn � 1q � PνpgnpXnq P Bnq � α,

so it also holds for the sup over ν P P0, proving that the test has valid level.

2. Let pgnqnPN denote the asymptotic test statistic. Note that for every ν P P0 we have

lim sup
nÑ8

Pνpψn � 1q � lim sup
nÑ8

PνpgnpXnq P Bq

Now the convergence gnpXn, νq DÑ V yields immediately that

PνpgnpXn, νq P Bq Ñ P pV P Bq � α

as n Ñ 8. Now by taking sup over ν P P0 the result follows since sup respects
inequalities.

3. Follows by arguments similar to the above by using the stronger assumption of uniform
convergence in distribution of the test statistic.

We will apply this way of constructing tests when we construct the GCM in the following
section.

2.3 Univariate GCM

In this section we de�ne the Generalised Covariance Measure and prove its asymptotic pro-
perties under various assumptions.

To motivate the construction of the GCM, recall the statement of Theorem 2.1.15; if X and
Y are real-valued random variables that are conditionally independent given a third random
variable Z, then the product of the residuals of X and Y when regressing on Z will have mean
zero. When given n observations of pX,Y, Zq we can perform the regression and calculate
empirical versions of these residuals. We can then test whether the mean of the product
of these residuals is zero to get a test of conditional independence. Let us be slightly more
formal and start to de�ne the quantities needed to prove the upcoming statements about the
asymptotic level of the proposed test.
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De�nition 2.3.1 (Generalised Covariance Measure). Let X and Y be univariate real-valued
random variables and let Z be a random variable with values in the measurable space pZ,Gq.
Consider the statistical model for X, Y and Z that contains all joint distributions on R2�Z
i.e.

P � tν probability measure on pR2 � Z,B2 b Gqu.

Consider the hypothesis H0 : X KK Y | Z with corresponding subset of probability measures
P0. For every ν P P, we can write

X � EνpX | Zqlooooomooooon
fνpZq

�X � EνpX | Zqloooooooomoooooooon
εν

,

i.e. fνpzq � EνpX | Z � zq and similarly

Y � EνpY | Zqlooooomooooon
gνpZq

�Y � EνpY | Zqloooooooomoooooooon
ξν

.

Let px, y, zqn P pR2 �Zqn be a sample of size n from the model and let pf pnq and pgpnq denote
estimates of f and g based on the sample. For i P t1, . . . , nu de�ne

R
pnq
i � pxi � pf pnqpziqqpyi � pgpnqpziqq

and de�ne

Tn �
1?
n

°n
i�1R

pnq
i�

1
n

°n
i�1pRpnqi q2 �

�
1
n

°n
j�1R

pnq
j

	2

 1

2

.

For α P p0, 1q the sequence of tests pψnqnPN given by

ψnppx, y, zqpnqq �
$&%1 if |Tn| ¡ z1�α

2

0 otherwise

is the Generalised Covariance Measure with level α, where z1�α
2
is the 1� α

2 quantile of the
standard normal distribution.

Theorem 2.3.2 (GCM has asymptotic pointwise level). Continuing from De�nition 2.3.1,
we de�ne for each ν P P

uνpzq � Eνpε2
ν | Z � zq, vνpzq � Eνpξ2

ν | Z � zq

We further de�ne the mean-squared prediction error and weighted mean-squared prediction
error for f

Mf
ν,n �

1

n

ņ

i�1

pfνpziq � pf pnqpziqq2 and M̃f
ν,n �

1

n

ņ

i�1

pfνpziq � pf pnqpziqq2vνpziq
� 25 �
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and

Mg
ν,n �

1

n

ņ

i�1

pgνpziq � pgpnqpziqq2 and M̃g
ν,n �

1

n

ņ

i�1

pgνpziq � pgpnqpziqq2uνpziq
for g.

Assume that for each ν P P0, nMf
ν,nM

g
ν,n

PÑ 0, M̃f
ν,n

PÑ 0, M̃g
ν,n

PÑ 0 and 0   Eνpε2
νξ

2
νq   8

then the GCM has pointwise asymptotic level.

Proof.

We show that for each ν P P0, Tn is an asymptotic test statistic, since Theorem 2.2.11 then
implies that the GCM has pointwise asymptotic level. We will show that Tn

DÑ N p0, 1q.
To that end let ν P P0 be given and �xed. We will at times lighten notation and omit ν
subscripts from expectations, probabilities and other expressions. De�ne

τNn � 1?
n

ņ

i�1

R
pnq
i and τDn �

�� 1

n

ņ

i�1

�
R
pnq
i

	2

�
�

1

n

ņ

j�1

R
pnq
j

�2
�
1

2

,

so that Tn is the ratio of τNn and τDn . If we can show that τDn
PÑ a

Varpεξq and τNn
DÑ

N p0,Varpεξqq by Slutsky's theorem, we will be done. Note that we can decompose τNn in the
following way

τNn � 1?
n

ņ

i�1

pfpxiq � εi � pf pnqpziqqpgνpyiq � ξi � pgpnqpziqq
� ?

n
1

n

ņ

i�1

εiξiloooooomoooooon
Un

� 1?
n

ņ

i�1

pfpziq � pf pnqpziqqpgpziq � pgpnqpziqqlooooooooooooooooooooooooooomooooooooooooooooooooooooooon
an

� 1?
n

ņ

i�1

pfpziq � pf pnqpziqqξiloooooooooooooooomoooooooooooooooon
bn

� 1?
n

ņ

i�1

pgpziq � pgpnqpziqqεiloooooooooooooooomoooooooooooooooon
cn

.

Note that by Theorem 2.1.15 the sequence pεiξiqiPN has mean zero, since X KK Y | Z for
ν P P0, and by assumption it has �nite variance (equal to the second moment of the sequence)
so the CLT gives that Un

DÑ N p0, Epε2ξ2qq. Cauchy-Schwarz inequality yields that

|an| ¤ 1?
n

gffe ņ

i�1

pfpziq � pf pnqpziqq2 ņ

i�1

pgpziq � pgpnqpziqq2 �bnMf
nM

g
n
PÑ 0,

since we have assumed that nMf
nM

g
n

PÑ 0. To show that bn
PÑ 0, we note that if b2n

PÑ 0

so does bn. By Lemma 2.1.28 if we can show that Epb2n | pXiq1¤i¤n, pZiq1¤i¤nq PÑ 0 we will
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2.3 Univariate GCM

thus have shown that bn
PÑ 0. Letting Xpnq � pXiq1¤i¤n and similarly Zpnq, note that

Epb2n | Xpnq, Zpnqq � 1

n

ņ

i�1

ņ

j�1

pfpziq � pf pnqpziqqpfpzjq � pf pnqpzjqqEpξiξj | Xpnq, Zpnqq,

by the fact that the terms involving f and pf are measurable when knowing Xpnq and Zpnq.
Since ξiξj only depends on Zi and Zj of the conditioning variables, we can drop the re-
maining variables from the conditioning expression. For i � j, by using that EpYi | Ziq �
EpYi | Zi, Zjq since Zj is independent of pYi, Ziq and by pulling out what is known, we get

Epξiξj | Xpnq, Zpnqq � EpYiYj � EpYj | ZjqYi � YjEpYi | Ziq � EpYj | ZjqEpYi | Ziq | Zi, Zjq
� EpYiYj | Zi, Zjq � EpYj | Zi, ZjqEpYi | Zi, Zjq � CovpYi, Yj | Zi, Zjq.

By Theorem 2.1.14 this is zero if Yi KK Yj | Zi, Zj . By assumption we have pYi, Ziq KK pYj , Zjq
so applying weak union and symmetry from Theorem 2.1.9 yields the desired conditional
independence statement. This lets us write

Epb2n | Xpnq, Zpnqq � 1

n

ņ

i�1

pfpziq � pf pnqpziqq2Epξ2
i | Ziq

� M̃f
n

PÑ 0

by assumption.

An analogous argument to the one above applies to cn, thus cn
PÑ 0 and Slutsky's theorem

yields that τNn
DÑ N p0,Varpεξqq. We now turn to τDn and note that

pτDn q2 �
1

n

ņ

i�1

�
R
pnq
i

	2

looooooomooooooon
pn

�
�

1

n

ņ

j�1

R
pnq
j

�2

loooooooomoooooooon
qn

.

From the results above, we can easily conclude that qn
PÑ 0 since

qn �
�

1?
n
τNn


2

,

and τNn converges in distribution to a normal distribution, while 1?
n
converges to 0 in pro-

bability, so Slutsky's theorem yields that their product converges in distribution to 0. Con-
vergence in distribution to a constant is equivalent to convergence in probability to the same
constant and squaring retains convergence by the continuous mapping theorem, proving that
qn

PÑ 0.
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We now intend to show that pn
PÑ Varpενξνq. We decompose pn into 9 terms as seen below

pn � 1

n

ņ

i�1

pfpziq � εi � pf pnqpziqq2pgpziq � ξi � pgpnqpziqq2
� 1

n

ņ

i�1

� �
pfpziq � pf pnqpziqq2 � ε2

i � 2pfpziq � pf pnqpziqqεi	
�
�
pgpziq � pgpnqpziqq2 � ξ2

i � 2pgpziq � pgpnqpziqqξi	 �
� 1

n

ņ

i�1

ε2
i ξ

2
iloooomoooon

In

� 1

n

ņ

i�1

pfpziq � pf pnqpziqq2pgpziq � pgpnqpziqq2looooooooooooooooooooooooooomooooooooooooooooooooooooooon
IIn

� 4

n

ņ

i�1

pfpziq � pf pnqpziqqpgpziq � pgpnqpziqqεiξiloooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
IIIn

� 1

n

ņ

i�1

pfpziq � pf pnqpziqq2ξ2
iloooooooooooooooomoooooooooooooooon

IV
f
n

� 1

n

ņ

i�1

pgpziq � pgpnqpziqq2ε2
ilooooooooooooooomooooooooooooooon

IV
g
n

� 2

n

ņ

i�1

pfpziq � pf pnqpziqq2pgpziq � pgpnqpziqqξiloooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
V
f
n

� 2

n

ņ

i�1

pfpziq � pf pnqpziqqεiξ2
iloooooooooooooooomoooooooooooooooon

VI
f
n

� 2

n

ņ

i�1

pgpziq � pgpnqpziqq2pfpziq � pf pnqpziqqεiloooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
V
g
n

� 2

n

ņ

i�1

pgpziq � pgpnqpziqqξiε2
iloooooooooooooooomoooooooooooooooon

VI
g
n

.

By the Law of Large Numbers, we have

In
PÑ Epε2ξ2q,

and as noted earlier εξ has mean zero, so this is also the variance of εξ. Note that for positive
sequences an and bn, we have

°
i aibi ¤

°
ai
°
bi (easily seen by noting that every term on

the LHS appears on the RHS), from which we can get

IIn ¤ nMf
nM

g
n
PÑ 0

by assumption. By Cauchy-Schwarz inequality we get

IIIn ¤ 4

�
1

n

ņ

i�1

ε2
i ξ

2
i

� 1
2
�

1

n

ņ

i�1

pfpziq � pf pnqpziqq2pgpziq � pgpnqpziqq2�
1
2

� 4I
1
2
n II

1
2
n

PÑ 0,
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since we just showed that In is convergent and IIn goes to 0 in probability, their product
goes to 0 in probability and the continuous mapping theorem yields that the same is true
when taking square roots.

By Lemma 2.1.28 IVfn
PÑ 0 since

EpIVfn | Xpnq, Zpnqq � 1

n

ņ

i�1

pfpziq � pf pnqpziqq2Epξ2
i | Xpnq, Zpnqq � M̃f

n
PÑ 0

by assumption and similarly for IVgn. By the triangle inequality and Cauchy-Schwarz, we
have

|Vfn| ¤
2

n

ņ

i�1

|gpziq � pgpnqpziq||fpziq � pf pnqpziq||gpziq � pgpnqpziq||ξi|
¤ 2

gffe 1

n

ņ

i�1

pfpziq � pf pnqpziqq2pgpziq � pgpnqpziqq2
gffe 1

n

ņ

i�1

pgpziq � pgpnqpziqq2ξ2
i

� 2
a
IInIVgn

PÑ 0

by the results above and similarly for Vgn. Finally by using the triangle inequality and
Cauchy-Schwarz again, we have

|VIfn| ¤
2

n

ņ

i�1

|fpziq � pf pnqpziq||ξi||εi||ξi|
¤ 2

gffe 1

n

ņ

i�1

pfpziq � pf pnqpziqq2ξ2
i

gffe 1

n

ņ

i�1

ε2
i ξ

2
i

� 2
a
IVgnIn

PÑ 0

by the results above and similarly for VIgn.

This shows that pn
PÑ Varpεξq thus by the continuous mapping theorem τDn

PÑ a
Varpεξq

and by Slutsky's theorem Tn
DÑ N p0, 1q as desired.

Using the uniform convergence results given in the section on probabilistic preliminaries, we
can also argue for the uniform asymptotic level of the GCM under stronger assumptions.

Theorem 2.3.3 (GCM has uniform asymptotic level). Consider the same setup as in The-

orem 2.3.2 Let P̃0 � P0. Assume that for each ν P P̃0, nMf
ν,nM

g
ν,n

P
ÑP̃0

0, M̃f
ν,n

P
ÑP̃0

0,

M̃g
ν,n

P
ÑP̃0

0, 0   infνPP̃0
Eνpε2

νξ
2
νq and supνPP̃0

Eνpε2�η
ν ξ2�η

ν q   8 for some η ¡ 0, then the
GCM has uniform asymptotic level wrt. P̃0.
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Proof.

We can repeat the arguments in Theorem 2.3.2 with the stronger assumptions, applying the
uniform versions of the continuous mapping theorem, Slutsky's theorem, the law of large
numbers and the central limit thoerem (Theorem 2.1.18, Theorem 2.1.23, Theorem 2.1.25
and Theorem 2.1.26 respectively). We note that we do rely on the unproven Assumption
2.1.24.

We have now proven that the test holds asymptotic level under checkable assumptions. One
should however note that there are examples of X and Y not being conditionally independent
given Z but where the mean of the product of the residuals is still zero (one such example
is where X and Y are independent Rademacher and Z � XY ). For such distributions the
GCM would always accept the null hypothesis of conditional independence despite this being
false.

Although X and Y are assumed to be univariate in the theorem above, it is possible to
generalize the GCM to the multivariate setting in several ways. A straightforward genera-
lization would be to simply proceed as above but instead letting Ri be the outer product
of the residuals. One could then construct a test statistic that was asymptotically standard
normal of dimension equal to the product of the dimensions of X and Y under the null. The
norm of such a test statistic is chi-squared with degrees of freedom equal to the dimension
of the normal distribution. In the original article by Shah & Peters they propose instead
considering each combination of components of X and Y , calculating the one-dimensional
test statistic and aggregating by taking the maximum. Both strategies lead to valid tests
and in the original article it is argued that the maximum-based test has a smaller bias.

One worthwhile thing to notice is the immediate lack of assumptions on Z. In theory Z

could take values in any measurable space. Of course we still need to be able to regress X
and Y on Z in practice and have results about the mean squared error of such a process for
the result to hold. With Z being uni- or multivariate and real-valued the applications are
obvious but one could also consider Z to be a functional random variable. This would mean
letting Z take values in a Hilbert or Banach space of functions. To illustrate this point we
will include the following theorem from [26] about the convergence rate of a functional linear
model. The article by Shin & Lee discusses a model where predictors are both functional
and multivariate but we will simplify and only give the result for the functional linear model.
The functional de�nitions mentioned in the theorem are omitted for brevity but reading the
following two chapters should provide most of the required background to understand the
theorem.

Theorem 2.3.4 (Mean squared prediction error in functional linear model). Let Z be a
functional random variable de�ned on r0, 1s, i.e. a random variable in L2pr0, 1sq with �nite
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second moment and covariance operator K and let ε be a real-valued random variable
independent from Z with Epεq � 0 and Epε2q � σ2. Let γ be a function in L2pr0, 1sq and
de�ne the random variable Y by

Y � xZ, γy � ε :�
» 1

0

γptqZptq dt� ε.

This is the functional linear model with scalar response.

Let pYi, ZiqiPN be an i.i.d. sequence of realizations generated by the model. We can then
estimate γ consistently using a principal components method as described in [26] yielding an
estimate pγ. Assume that Z has �nite fourth moment and let pλj , φjqjPN denote the eigenvalue
and -vector pairs of the covariance operator K . Assume that

1. There exists C1 ¡ 0 so that for all j ¥ 1, we have EpxX,φjy4q ¤ C1λ
2
j .

2. There exists C2 ¡ 0 and a ¡ 1 so that for all j ¥ 1, we have C�1j�a ¤ λj ¤ Cj�a and
λj � λj�1 ¥ Cj�a�1.

3. There exists C3 ¡ 0 and b ¡ 1{2 such that for all j ¥ 1, we have |xγ, φjy| ¤ Cj�b.

Then for a new independent observation Z̃, we have

?
nE

�
pxpγ, Z̃y � xγ, Z̃yq2 | pYi, Ziq1¤i¤n

	
PÑ 0.

Under some technical smoothness conditions, we do in fact achieve a mean square prediction
error that is su�cient for the requirements given in Theorem 2.3.2. While the linear relati-
onship required is a rather strong condition more scalar-on-function regression methods are
actively being developed (see [20] for an overview of methods.)

If we consider a situation where the functional linear model is applicable, we now have a
concrete example of a conditional independence test with pointwise asymptotic level. To the
best of the authors knowledge, this is a novel result and the �rst example of a conditional
independence test involving functional data.

Theorem 2.3.5 (GCM in the functional linear model with scalar response). Let X and Y be
univariate random variables and let Z be a functional random variable de�ned on r0, 1s as in
Theorem 2.3.4. Assume that both pX,Zq and pY,Zq satisfy the conditions in Theorem 2.3.4
and that furthermore both uνpzq and vνpzq in Theorem 2.3.2 are bounded by some σ2 ¡ 0

for all ν. Then the GCM has asymptotic pointwise level when testing whether X KK Y | Z.

Proof.

We will only need to show that
?
nMf

ν,n and
?
nMg

ν,n go to zero in probability, since the
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remaining conditions then follow by the assumptions. This holds by Markov's inequality and
Theorem 2.3.4 .

There are many technical assumptions in the theorem above but note that most of them
will hold if Z is a functional Gaussian. If a more general regression method was applied, we
would probably be able to drop many of the technical assumptions required in Theorem 2.3.4.
Theorem 2.3.5 allows us to test for conditional independence when X and Y are univariate
real and Z is functional. Ideally we would like to consider X, Y and Z all being functional
in nature and testing conditional independence. The rest of the thesis will be devoted to the
pursuit of generalizing the GCM to the case where X, Y and Z belong to a Hilbert space,
which encapsulates both data types. In the upcoming chapter we will delve into the theory
of Hilbert spaces.
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Hilbert spaces, operator theory and Bochner integration

In this chapter we will give an overview of the theory of Hilbert spaces, which will form the
foundation of the subsequent development of probability and statistics on Hilbert spaces.
We will review some of the fundamental properties of Hilbert spaces and then proceed to
de�ne linear functionals and operators between Hilbert spaces. Finally we will show how to
construct an integral for functions with values in a Hilbert space. Throughout this chapter
we will be sparse with proofs in an attempt to be reasonably brief and due to the well-known
nature of many of the given results. For the full proofs about the geometry and fundamentals
of Hilbert spaces see [23] or [12] for proofs about operators and integrals on Hilbert spaces.

3.1 Fundamental properties of Hilbert spaces

In this section we motivate and give the fundamental de�nitions and theorems regarding
Hilbert spaces. These are mainly results about decompositions of variables in the space or
the space itself using the inner product.

Recall the usual "nice" properties of the Euclidean spaces Rd: we have a well-de�ned distance
measure, a size of each element (a norm), a sense of orthogonality through an inner product
and the space has "no holes" in the sense that if we have a Cauchy sequence in Rd, we can �nd
a limit of the sequence in Rd i.e. the space is complete. Hilbert spaces are a generalization
of the Euclidean spaces that retain all of these concepts (and thus Rd are all Hilbert spaces)
but also include more abstract spaces that can be of in�nite dimension. We de�ne a Hilbert
space below (for a review of some essential de�nitions of topology, algebra and analysis, see
the appendix).

De�nition 3.1.1 (Hilbert space). A Hilbert space is an inner product space over R or C
that is complete with respect to the metric induced by the inner product.

� 33 �



3.1 Fundamental properties of Hilbert spaces

Throughout this thesis we will concentrate solely on Hilbert spaces over R. As previously
mentioned the Euclidean spaces are all Hilbert spaces but lets consider some more exotic
examples.

Example 3.1.2 (`2). Let RN denote the set of all sequences with values in R and denote by
`2pNq (or simply `2 for short) the subset of RN of square-summable sequences i.e.

`2pNq �
#
x P RN

��� 8̧

n�1

x2
n   8

+
.

It is straight-forward to show that `2 is an inner product space with inner product for x, y P `2

xx, yy �
8̧

n�1

xnyn,

which is �nite by Cauchy-Schwarz inequality. The norm is given by

‖x‖ �
a
xx, xy �

gffe 8̧

n�1

x2
n.

Using the tools of real analysis, one can show that `2 is in fact complete and is thus a Hilbert
space [23].

Example 3.1.3 (L2r0, 1s). Let pr0, 1s,Br0,1s,mr0,1sq denote the unit interval with the Borel
σ-algebra restricted to the unit interval and the Lebesgue measure m. Consider the set of
measurable functions from r0, 1s to R denoted by Mr0, 1s. Let L2r0, 1s be the subset of
Mr0, 1s given by

L2r0, 1s �
#
f PMr0, 1s

��� »
r0,1s

f2 dmr0,1s   8
+
.

De�ne an equivalence relation on L2r0, 1s such that f � g ðñ mpf � gq � 0 and construct
the quotient space L2r0, 1s consisting of the equivalence classes under the aforementioned
relation. We will typically abuse notation slightly and still refer to the elements of L2r0, 1s
as functions despite them being equivalence classes. It is immediate that this is an inner
product space with inner product for f, g P L2r0, 1s

xf, gy �
»
r0,1s

fg dmr0,1s,

which is �nite by Hölder's inequality. The norm is given by

‖f‖ �
a
xx, xy �

d»
r0,1s

f2 dmr0,1s.
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The completeness of L2r0, 1s is a deep result in analysis: the Riesz-Fisher theorem (see [23]
for a proof) and using the conclusions of that theorem, we get that L2r0, 1s is a Hilbert space.

A favoured property of the Euclidean spaces is the existence of a basis: a linearly independent
set such that every element of the vector space can be written as a linear combination of
basis elements. We can de�ne a similar concept for Hilbert spaces:

De�nition 3.1.4 (Orthonormality, orthogonality and ONB's). Let H be a Hilbert space
with inner product x�, �y and norm ‖�‖.
x, y P H are said to be orthogonal if xx, yy � 0.

A set of elements teiuiPI , where I is some index sex, is said to be orthonormal if ‖en‖ � 1

for all n P N and if the elements of the sequence are pairwise orthogonal.

If spanpteiuiPIq is also dense in H, it is said to be an orthonormal basis (ONB) for H. The
dimension of a Hilbert space is the cardinality of I.

Note that the de�nition above is not identical to the linear algebra de�nition of a basis. We
require that every element ofH can be approximated arbitrarily well with linear combinations
of basis elements whereas the linear algebra de�nition of a basis requires the existence of a
linear combination equalling the element. The di�erent de�nitions are however identical for
�nite-dimensional spaces. Having an ONB allows us to express elements of the Hilbert space
using "coordinates" and �nding these coordinates can be done using the inner product as
can be seen from the following result:

Theorem 3.1.5 (Fourier expansion and Parseval's identity). Every element x of a Hilbert
space H with ONB teiuiPI can be written

x �
¸
iPI
xx, eiyei,

which is called the Fourier expansion of x and furthermore we have Parseval identity:

‖x‖2 �
¸
iPI
xx, eiy2.

We can also express the inner product of two elements x, y P H as

xx, yy �
¸
iPI
xx, eiyxy, eiy.

For a proof of Theorem 3.1.5 and the following theorems, see [23]. The usefulness of a basis
diminishes greatly if the index set is not countable. This is at least partly due to the fact
that for uncountable sums to be �nite, only a countable number of terms can be non-zero.
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Theorem 3.1.6 gives a characterization of when a Hilbert space has a countable ONB. Recall
that a space is separable if it contains a countable, dense subset.

Theorem 3.1.6 (Separability and countable ONB's). A Hilbert space is separable if and
only if it has a countable orthonormal basis.

Let us see some examples of ONB's for the previous examples.

Example 3.1.7 (ONB for `2). Consider `2 as in Example 3.1.2. Consider the `2 elements ei
which are sequences with a 1 in the i'th position and zero elsewhere. The sequence peiq8i�1

is an ONB for `2. Note that the index set is N so `2 is in�nite-dimensional. The ONB is
countable, so `2 is separable.

Example 3.1.8 (ONB for L2r0, 1s). Consider again L2r0, 1s as de�ned in Example 3.1.3.
Consider the sets of L2r0, 1s elements

B1 � tfnpxq �
?

2 sinpnπxqu
B2 � tf0pxq � 1u Y tfnpxq �

?
2 cospnπxq | n P Nu

B3 � tf0pxq � 1u Y tf2n�1pxq �
?

2 sinp2nπxq | n P Nu Y tf2npxq �
?

2 cosp2nπxq | n P Nu.

These are all examples of ONB's for L2r0, 1s (see [12] Theorem 2.4.18 for a proof of this fact).
Note that all the bases are indexed by N0 or N, thus the space is in�nite-dimensional and
separable.

In many �elds of mathematics we identify two spaces as being "almost the same" (or more
formally isomorphic or congruent) if the structure of the spaces is the same even if the objects
have di�erent names. There is a notion of congruence of metric spaces:

De�nition 3.1.9 (Isomorphic metric spaces). Two metric spaces pM1, d1q and pM2, d2q are
said to be isomorphic or congruent if there exists a bijective function Ψ : M2 Ñ M1 such
that

d2px1, x2q � d1pΨpx1q,Ψpx2qq @x1, x2 PM2.

We're often only interested in spaces modulo congruence, since if the two spaces are congru-
ent, they have the same "structure". With that in mind we can note the following result.

Theorem 3.1.10. Every in�nite-dimensional separable Hilbert space is congruent to `2.

This shows that we can essentially think of any separable in�nite-dimensional Hilbert space
as `2. This space is the canonical choice for a separable in�nite-dimensional Hilbert space
due to the many well-known results about summation of sequences and due to the obvious
choice of ONB in the space.
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3.2 Operators on Hilbert spaces

In this section we will give some results about linear mappings between Hilbert spaces (ope-
rators) and functionals on Hilbert spaces. This theory is crucial for the later development of
covariances of Hilbertian random variables and for Hilbertian linear models.

Having de�ned the fundamental properties of a single Hilbert space, we can start conside-
ring what happens when we consider mappings between and on Hilbert spaces. We will
concentrate on the mappings that preserve the underlying vector space structure; the homo-
morphisms. For vector spaces these are exactly the linear maps and for �nite-dimensional
spaces we have a fully developed theory of linear algebra to understand these mappings.
We would also like to preserve the topological structure of the spaces, so we further restrict
ourselves to continuous mappings. On a �nite-dimensional space every linear mapping is
continuous but this is not the case on in�nite-dimensional spaces. However for linear maps
continuity is intimately connected to boundedness as we will now show.

De�nition 3.2.1 (Bounded and linear operators). Let X1 and X2 be normed vector spaces
with norms ‖�‖1 and ‖�‖2 respectively. Let furthermore A : X1 Ñ X2 be a mapping.

We say that A is linear if A pcxq � cA pxq and if A px � yq � A pxq �A pyq for all x P X1

and c P R.

We say that a linear mapping A is bounded if there exists C ¡ 0 such that ‖A x‖2 ¤ C‖x‖1

for all x P X1.

Theorem 3.2.2 (Linear operators are uniformly continuous i� they are bounded). Let X1

and X2 be normed vector spaces. Let furthermore A : X1 Ñ X2 be a linear mapping. Then
A is bounded if and only if it is uniformly continuous.

Proof.

Let ‖�‖1 and ‖�‖2 denote the norms of X1 and X2 respectively.

If A is uniformly continuous, it is in particular continuous at 0, so we can �nd δ ¡ 0, so
‖A x‖2   1 for all x P X1 such that ‖x‖1   δ. Then using linearity of A and the norm, we
get

‖A x‖2 �
∥∥∥∥A

�
δx

‖x‖1


∥∥∥∥
2

‖x‖1

δ
¤ 1

δ
‖x‖1,

which proves the �rst implication. For the converse note that boundedness trivially implies
that the functional is Lipschitz, which implies that it is uniformly continuous.

This leads to the following fundamental de�nition of a bounded linear operator and the space
of bounded linear operators.
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De�nition 3.2.3 (Space of bounded linear operators). Let X1 and X2 be normed vector
spaces. We denote by BpX1,X2q the set of all bounded linear mappings from X1 to X2. The
elements of BpX1,X2q are called bounded linear operators or simply operators. If X1 � X2 �
X we write BpX q.
By convention for A P BpX1,X2q we often write A x to denote A pxq for x P X1.

We de�ne the rank of an operator A P BpX1,X2q by

rankpA q � dimpImpA qq.

Note that the rank of an operator be in�nite. The space of bounded linear operators has
some particularly nice properties, for instance it is quite easy to see that it is a vector space.
Furthermore we can de�ne a norm and show that if the codomain of the operators is complete,
then so is the space of bounded linear operators. Recall that a complete normed space is
called a Banach space.

Theorem 3.2.4 (Operator norm and completeness of bounded linear operators). Let X1 and
X2 be normed vector spaces with norms ‖�‖1 and ‖�‖2 respectively and consider the space of
bounded linear operators BpX1,X2q. For A P BpX1,X2q we de�ne the operator norm of A

as

‖A ‖ � sup
xPX1,‖x‖1�1

‖A x‖2.

For any x P X1, we have the fundamental inequality

‖A x‖2 ¤ ‖A ‖‖x‖1,

and if X2 is a Banach space then so is BpX1,X2q under the operator norm.

With these results these results in mind, we proceed to focus on results more speci�c to
Hilbert spaces. We will mainly consider two cases, the bounded linear functionals on a
Hilbert space and bounded linear operators between Hilbert spaces. We start by considering
the functionals and introduce the notion of a dual space.

De�nition 3.2.5 (Dual space). Let X be a normed vector space, we de�ne the dual space
of X as BpX ,Rq and denote it by X �.

One motivation for introducing the idea of a dual space is the fact that we often understand
a space by understanding the well-behaved functions that act on it. One of the surprising
facts about the dual space of a Hilbert space is Riesz representation theorem, which is proved
in [23].
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Theorem 3.2.6 (Riesz representation theorem). LetH be a Hilbert space with inner product
x�, �y and norm ‖�‖H and let A P H�. Then there exists a unique element hA P H called the
representer of A , with the property that

A h � xh, hA y, @h P H

and ‖A ‖ � ‖hA ‖H where ‖�‖ denotes the operator norm.

Note that the Riesz representation theorem implies that H is self-dual, i.e. the dual space of
H is congruent with H.

Corollary 3.2.7 (Hilbert spaces are self-dual). Let H be a Hilbert space. Then H� is
congruent to H.

We thus have a complete characterization of the linear functionals and their behaviour, since
they simply rely on the properties of the inner product. This will prove invaluable for many
proofs later.

In the remainder of this section we will consider the bounded linear operators between two
Hilbert spaces. We can think of such operators as generalizations of operators between
Euclidean spaces which we would typically represent as matrices. We start by proving a
relationship between BpH1,H2q and BpH2,H1q through a generalization of transposition of
matrices.

Theorem 3.2.8 (Adjoint operators and their existence). Let H1 and H2 be Hilbert spaces
with inner products x�, �y1 and x�, �y2 respectively. For every A P BpH1,H2q there exists a
unique element A � P BpH2,H1q such that

xA h1, h2y2 � xh1,A
�h2y1, @h1 P H1, h2 P H2.

Proof.

For each h2 P H2, consider the bounded linear functional φ P H�
1 , given by

φph1q � xA h1, h2y2.

Linearity is obvious and boundedness follows from Cauchy-Schwarz. By Riesz representation
theorem there exists a unique representer y P H1, such that

φph1q � xh1, yy1.

This lets us de�ne for each h2 P H2, A �h2 :� y, and we thus have

xA h1, h2y2 � xh1,A
�h2y1,
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as desired. It remains to show that A � is a bounded linear operator. Linearity can be seen
by noting that the φ's for linear combinations of elements in H2 decompose linearly. To get
boundedness, we note that (letting ‖�‖ denote the operator norm)

‖A �h2‖2
1 � xA �h2,A h2y1 � xA A �h2, h2y2 ¤ ‖A A �h2‖2‖h2‖2 ¤ ‖A ‖‖A �h2‖1‖h2‖2,

where we have written the norm using the inner product, applied that A � is the adjoint of
A , applied Cauchy-Schwarz and used the operator norm inequality. Dividing through by
‖A �h2‖1 proves boundedness and therefore also the result.

This leads to the following de�nition.

De�nition 3.2.9 (Self-adjoint operators). Let H1 and H2 be Hilbert spaces. Let A P
BpH1,H2q.
The operator de�ned as A � in Theorem 3.2.8 is called the adjoint of A . If H1 � H2 and
A � A � then A is said to be self-adjoint.

The adjoint of an operator and the operator itself share several nice properties as the following
theorem shows (see [12] for a proof of these properties).

Proposition 3.2.10 (Properties of adjoint operators). Let H1 and H2 be separable Hilbert
spaces and let A P BpH1,H2q. Then

1. pA �q� � A .

2. ‖A �‖ � ‖A ‖.

3. A �A and A A � are self-adjoint.

4. ‖A �A ‖ � ‖A ‖2.

Recall that these are all properties of matrix transposition and matrix transposition is exactly
the �nite-dimensional version of �nding an adjoint operator. For operators in BpHq we have
further special properties de�ned below.

De�nition 3.2.11 (De�niteness of operators). Let H be a Hilbert space and consider A P
BpHq.
We say that A is non-negative de�nite or simply non-negative if it is self-adjoint and if

xA h, hy ¥ 0, @h P H.

We say that A is positive de�nite or positive if the inequality is strict.
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Non-negative operators are nice because they admit a square-root decomposition as the
following theorem illustrates.

Proposition 3.2.12 (Square roots of non-negative de�nite operators). Let H be a Hilbert
space and let A P BpHq be a non-negative operator. Then there exists a unique operator
S P BpHq such that S 2 � A and such that S commutes with any operator that commutes
with A . We call this operator the square-root operator of A and denote it by A 1{2.

When working with an operator A P BpH1,H2q, we could sometimes be interested in the
inverse operation. For the Euclidean spaces we are used to inverting matrices as long as they
are bijective. This still applies in general, i.e. if an operator is bijective (KerpA q � t0u and
ImpA q � H2) we know that an inverse exists. The question is whether it is bounded which
the following theorem asserts in the a�rmative.

Proposition 3.2.13 (Inverse operators). Let H1 and H2 be Hilbert spaces and consider
A P BpH1,H2q. If A is bijective and A �1 is the inverse operator, then A �1 P BpH2,H1q.

Unfortunately we shall see later that the operators we see in practice on Hilbert spaces are
rarely bijective and thus the existence of an inverse operator can barely ever be assumed.
The operators we see in practice are the compact operators and let us immediately de�ne
what it means for an operator to be compact.

De�nition 3.2.14 (Compact operator). LetH1 andH2 be Hilbert spaces. A linear mapping
A : H1 Ñ H2 is said to be compact if for every bounded sequence txnu8n�1, the sequence
tA xnu8n�1 contains a convergent subsequence.

Compact operators behave much like the well-known linear transformations on the Eucli-
dean spaces, that can be represented by matrices. Let us note a few properties of compact
operators.

Theorem 3.2.15 (Properties of compact operators). Let H1, H2 and H3 be Hilbert spaces
and let A P BpH1,H2q and B P BpH2,H3q. Then

1. If rankpA q   8 then A is compact.

2. If A or B is compact, then so is BA .

3. A is compact if and only if there exists a sequence of operators tAnu8n�1 with �nite
rank such that ‖A �An‖Ñ 0 as nÑ8 where ‖�‖ denotes the operator norm.

4. A is compact if and only if A � is compact.
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Proof.

We only prove the �rst two claims and refer to [12] for a proof of the remaining two claims.

For the �rst claim note that if ImpA q is �nite-dimensional, it is isomorphic to Rn and thus
the result follows immediately from Bolzano-Weierstrass theorem.

For the second claim, let phnqnPN be a bounded sequence inH1. If A is compact, the sequence
pA hnqnPN contains a convergent subsequence and since B is continuous, pBA hnqnPN also
contains a convergent subsequence and thus A B is compact. If instead B is compact, we note
that the sequence pA hnqnPN is bounded, since A is continuous, and therefore pBA hnqnPN
contains a convergent subsequence, since B is compact, which proves that BA is compact.

The theorem above shows that the compact operators are exactly the generalization of the
�nite-rank operators in the sense that they can be approximated arbitrarily well by �nite-
rank operators. Unlike the usual �nite-dimensional cases the identity operator is not compact
as we shall see below.

Theorem 3.2.16 (Identity operator is not compact). Let H be an in�nite-dimensional
Hilbert space. Then the identity operator on H is not compact.

Proof.

Let ‖�‖ denote the norm on H, I denote the identity operator and let penqnPN be an ortho-
normal basis for H. Note that penqnPN is a bounded sequence and that for i � j

‖I ei �I ej‖ � ‖ei � ej‖ �
b
‖ei‖2 � ‖ej‖2 �

?
2,

by Parseval's identity. Therefore pI enqnPN does not contain a convergent subsequence and
thus the operator is not compact.

It is perhaps a little surprising that the identity operator is not well-behaved and this will
have consequences for the probability theory we shall develop later. As alluded to earlier,
we can show that none of the the compact operators are bijective and thus we cannot invert
them.

Corollary 3.2.17 (Bijective operators are not compact). LetH1 andH2 be in�nite-dimensional
Hilbert spaces and assume that A P BpH1,H2q is bijective. Then A is not compact.

Proof.

Note that

A �1A � I ,
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where I denotes the identity operator on H1. If either A or its inverse were compact, this
would contradict Theorem 3.2.15 since I is not compact and therefore both A and A �1

are not compact.

The compact operators are nice in particular because of the spectral theory developed for
them. Recall that for the Euclidean spaces, when given a symmetric matrix, we can �nd an
eigen-decomposition of the matrix into an orthonormal basis. This is the crucial theoretical
underpinnings of principal component analysis for multivariate random variables amongst
other powerful results. We would like to generalize the concept of eigen-decompositions and
compact operators are exactly the operators where this is possible as we shall see. Let us
de�ne eigenvectors and -values.

De�nition 3.2.18 (Eigen-decomposition of operators). Let H be a Hilbert space and let
A P BpHq. Assume that there exists λ P R and e P H so that

A e � λe,

then we say that λ is an eigenvalue of A and e is an eigenvector (or sometimes eigenfunction
if H is a function space).

This is basically the same de�nition as for matrices and �nite-dimensional linear transforma-
tions. We will at times draw upon the notion of an outer product on Hilbert spaces which
generalizes the outer product of vectors on the Euclidean spaces.

De�nition 3.2.19 (Outer product). Let H1 and H2 be Hilbert spaces with inner products
x�, �y1 and x�, �y2. Let h1 P H1 and h2 P H2. The linear mapping from H1 to H2 given by

h1 d1 h2 � x�, h1y1h2

is called the outer product of h1 with h2. Similarly we de�ne the outer product of h2 with
h1 as

h2 d2 h1 � x�, h2y2h1.

If H1 � H2 we simply write h1 d h2 and h2 d h1 respectively.

Remark 3.2.20 (Outer product notation). The outer product is typically denoted by b,
since it is intimately connected with the tensor product of Hilbert spaces. We will not delve
into the theory of tensor products and to avoid any confusion for other readers unfamiliar
with this theory, we will instead employ the symbol d to denote the outer product.

Some authors also de�ne the outer product h1 d1 h2 � x�, h2y2h1 i.e. the opposite of what
was done in this thesis. We follow the notation in [12] and as such have chosen to do it as in
the de�nition.
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Let us note some simple properties of the outer product.

Theorem 3.2.21 (Properties of the outer product). Let H1 and H2 be Hilbert spaces with
inner products x�, �y1 and x�, �y2 and norms ‖�‖1 and ‖�‖2 respectively. Let h1, h̃1 P H1 and
h2, h̃2 P H2 and a, b P R. Then

1. h1 d1 h2 P BpH1,H2q with ‖h1 d1 h2‖ � ‖h1‖1‖h2‖2, where ‖�‖ denotes the operator
norm.

2. ph1 � h̃1q d1 ph2 � h̃2q � h1 d1 h2 � h1 d1 h̃2 � h̃1 d1 h2 � h̃1 d1 h̃2.

3. pah1q d1 pbh2q � abph1 d1 h2q.

4. rankph1 d1 h2q � 1 if h1 and h2 are non-zero.

5. ph1 d1 h2q� � h2 d2 h1.

Proof.

1. By de�nition and Cauchy-Schwarz, we have

‖h1 d1 h2‖ � sup
h̃PH1,‖h̃‖1

‖xh̃, h1y1h2‖2 ¤ sup
h̃PH1,‖h̃‖1

‖h̃‖1‖h1‖1‖h2‖2 � ‖h1‖1‖h2‖2.

Setting h̃ � h1

‖h1‖ yields equality in the above, thus proving the statement.

2. Consider how the operator acts on a h P H1 and use properties of the inner product.

3. Similar to above.

4. Every element in Imph1 d1 h2q can be written on the form c � h2 for some c P R.
Conversely, given some c P R, we can �nd h P H1, so that xh, h1y � c, thus Imph1 d1

h2q � spanph2q, which is one-dimensional and therefore rankph1 d1 h2q � 1.

5. Straightforward calculations show that for any h̃1 P H1 and h̃2 P H2, we have

xph1 d1 h2qh̃1, h̃2y2 � xxh1, h̃1y1h2, h̃2y2 � xh1, h̃1y1xh2, h̃2y2
� xh̃1, xh̃2, h2y2h1y1 � xh̃1, ph2 d2 h1qh̃2y2,

proving the statement.
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With that in mind, we can give the spectral theorem for compact, self-adjoint operators.

Theorem 3.2.22 (Spectral theorem for compact and self-adjoint operators). Let H be a
Hilbert space and let A P BpHq be a compact, self-adjoint operator.

The set of non-zero eigenvalues of A is either �nite or consists of a sequence tending to zero.
Each non-zero eigenvalue has �nite multiplicity and eigenvectors corresponding to di�erent
eigenvalues are orthogonal.

Letting |λ1| ¥ |λ2| ¥ . . . denote the eigenvalues of A and penq8n�1 denote the corresponding
eigenvectors, we can apply the Gram-Schmidt procedure to penq8n�1 and get an orthonormal
basis pẽnq8n�1 of ImpA q such that

A �
8̧

j�1

λj ẽj d ẽj ,

i.e. for every h P H

A h �
8̧

j�1

λjxẽj , hyẽj .

If A is also non-negative-de�nite, then all the eigenvalues are non-negative.

Ideally we would like a way to decompose any compact operator between two Hilbert spa-
ces. Recall that for any operator A P BpH1,H2q the operator A �A was self-adjoint. If
A is compact, we know that composition with a bounded operator produces a compact
operator, thus A �A is also compact. This implies that A �A has an eigen-decomposition
and similarly for A A �. This leads to the following theorem and de�nition of the singular
value decomposition for operators that is a straightforward generalization of the concept for
matrices.

Theorem 3.2.23. Let H1 and H2 be Hilbert spaces and let A P BpH1,H2q be a compact
operator. Then denoting pλ2

j q8j�1 the non-ascending eigenvalues of A �A (or equivalently
A A �), pe1jq8j�1 the orthonormal eigenvectors of A �A and pe2jq8j�1 the orthonormal eigen-
vectors of A A � such that A �e2j � λje1j , we have

A �
8̧

j�1

λje1j d1 e2j ,

i.e. for h P H1

A h �
8̧

j�1

λjxe1j , hy1e2j ,

where x�, �y1 denotes the inner product in H1. We call the decomposition above the singular
value decomposition and ppλ2

j , e1j , e2jqq8j�1 a singular system for A .

� 45 �



3.2 Operators on Hilbert spaces

The singular value decomposition of a compact operator has many applications and uses, for
instance it lets us calculate the norm of an operator with ease.

Theorem 3.2.24 (Operator norm is largest singular value). Let H1 and H2 be Hilbert
spaces and let A P BpH1,H2q be a compact operator with largest singular value λ1. Then

‖A ‖ � λ1.

The singular value decomposition of a compact operator is in fact a fundamental property
of compact operators as the next theorem shows.

Theorem 3.2.25 (Compact if and only if singular value decomposition). Let H1 and H2 be
Hilbert spaces and let A P BpH1,H2q. A is compact if and only if A has a singular value
decomposition.

Proof.

We know that every compact operator has a singular value decomposition, so to prove the
converse, assume that we're given an operator A with singular system ppλ2

j , e1j , e2jqq8j�1 and
de�ne

An �
ņ

j�1

λjpe1j d1 e2jq.

Each An is obviously �nite-dimensional and we have ‖A �A‖ � λn�1, by Theorem 3.2.24,
which goes to 0 as nÑ8. We have now approximated A by a sequence of �nite-dimensional
operators so by Theorem 3.2.15, A is also compact, proving the statement.

Now that we have de�ned and explored the compact operators, we will de�ne the �nal two
classes of operators, that we will need for the later work; the Hilbert-Schmidt operators and
the trace class operators. We start by considering the Hilbert-Schmidt operators.

De�nition 3.2.26 (Hilbert-Schmidt operators). LetH1 andH2 be Hilbert spaces, let peiqiPI
be an orthonormal basis for H1 and let A P BpH1,H2q. Letting ‖�‖2 denote the norm on
H2, if ¸

iPI
‖A ei‖2

2   8,

then A is called a Hilbert-Schmidt operator. The collection of Hilbert-Schmidt operators in
BpH1,H2q is denoted BHSpH1,H2q. The space of Hilbert-Schmidt operators is an inner-
product space with

xA ,ByHS �
¸
iPI
xA ei,Beiy2

for A ,B P BpH1,H2q, where x�, �y2 is the inner product on H2. The corresponding norm is

‖A ‖2
HS �

¸
iPI

‖A ei‖2
2.
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For a proof that the construction above is well-de�ned, see [12].

Let us note some nice properties of Hilbert-Schmidt operators and in particular how the
outer product behaves with the Hilbert-Schmidt norm and inner product.

Theorem 3.2.27 (Properties of Hilbert-Schmidt operators). Let H1 and H2 be Hilbert
spaces with inner products x�, �y1 and x�, �y2 and norms ‖�‖1 and ‖�‖2 respectively. Let A P
BHSpH1,H2q and further h1, h̃1 P H1 and h2, h̃2 P H2.

1. A � P BHSpH2,H1q.

2. A is compact.

3. If pλjq8j�1 are the singular values for A then

‖A ‖2
HS �

8̧

j�1

λ2
j .

4. xh1 d1 h2, h̃1 d1 h̃2yHS � xh1, h̃1y1xh2, h̃2y2.

5. ‖h1 d1 h2‖HS � ‖h1‖1‖h2‖2.

Proof.

For proofs of the �rst three properties, see [12].

For the fourth claim, let peiqiPI be an ONB for H1. We get by de�nition

xh1 d1 h2, h̃1 d1 h̃2yHS �
¸
iPI
xxei, h1y1h2, xei, h̃1y1h̃2y2

� xh2, h̃2y2
¸
iPI
xei, h1y1xei, h̃1y1 � xh1, h̃1y1xh2, h̃2y2,

where the �nal equality is due to Parseval's identity.

The �fth claim follows immediately from the fourth.

The fact that the Hilbert-Schmidt norm can be written as the sum of the squared singular
values is highly useful in practice. The space of Hilbert-Schmidt operators is particularly
nice because it forms a Hilbert space and we can explicitly construct an ONB for the space
by combining ONB's of the domain and image Hilbert spaces.

Theorem 3.2.28 (Basis for Hilbert-Schmidt operators). Let H1 and H2 be Hilbert spaces
with orthonormal bases pe1iqiPI and pe2jqjPJ respectively. The space BHSpH1,H2q is a
Hilbert space and has an orthonormal basis given by pe1i d1 e2jqpi,jqPI�J .
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The theorem above also states, that if both Hilbert spaces are separable, the space of Hilbert-
Schmidt operators will also be separable. Note also that the theorem shows that the �nite
rank operators are dense in the space of Hilbert-Schmidt operators since the orthonormal
basis consists of rank one operators.

We saw before that the Hilbert-Schmidt operators have square-summable singular values, so
a natural extension could be to consider operators with summable singular values. These are
the �nal class of operators; the trace class operators.

De�nition 3.2.29 (Trace-class operators). Let H1 and H2 be Hilbert spaces and let peiqiPI
be an orthonormal basis for H1. Denoting the inner product on H1 by x�, �y1, an operator
A P BpH1,H2q is said to be trace-class if

‖A ‖TR :�
¸
iPI
xpA �A q1{2ei, eiy1

is �nite. We call the quantity ‖A ‖TR the trace norm of A . We denote the space of all
trace-class operators from H1 to H2 by BTRpH1,H2q.

An argument akin to the one employed for Hilbert-Schmidt operators could show that this
is independent of the choice of orthonormal basis for H1. The trace class operators have
several nice properties as seen below.

Theorem 3.2.30 (Properties of trace-class operators). Let H1 and H2 be Hilbert spaces
and let A P BpH1,H2q be trace class. Then

1. A is Hilbert-Schmidt and compact.

2. If pλjq8j�1 are the singular values of A then

‖A ‖TR �
8̧

j�1

λj .

3. If H1 � H2 and A is self-adjoint with eigenvalue sequence denoted by pλjq8j�1 then

‖A ‖TR �
8̧

j�1

|λj |.

We shall later see that the natural extension of the covariance of random variables to the
Hilbert space setting, leads to the covariance being a trace class operator.

� 48 �



3.3 Integration of Hilbertian functions

3.3 Integration of Hilbertian functions

In this section we will develop a rigorous theory of integration for functions with values in a
separable Hilbert space. This is the theory of Bochner integration and constructs integrals
in a way paralleling the construction of the Lebesgue integral for real-valued functions.

When de�ning the integral of a measurable real-valued function de�ned on some background
measure space pX ,E, µq, we consider an approximating sequence of simple functions where the
integrals are obvious and de�ne the integral of the function as the limit of integrals of simple
functions. We will construct a similar idea for Hilbertian functions by �rst de�ning what it
means for a function to be measurable. While most of the integration theory developed will
work in more general spaces, we will present the theory solely for Hilbert spaces.

Recall that for an R-valued function f , measurability amounts to the pre-image of every
set E P E under f to be an element of the Borel σ-algebra. Even though the concept of a
Borel σ-algebra generalizes well, this concept of measurability is not always useful on general
in�nite-dimensional spaces. The key property that we would like to retain is the idea of
approximating a function with simple functions. This is the notion of strong measurability
as de�ned below.

De�nition 3.3.1 (Simple Hilbertian function). Let pX ,E, µq be a measure space and let
H be a Hilbert space. A function f : X Ñ H is said to be simple if there exists k P N,
A1, . . . , Ak P E and h1, . . . , hk P H such that

fpxq �
ņ

i�1

1Aipxqhi.

Note that the representation is not unique.

De�nition 3.3.2 (Strong measurability of Hilbertian functions). Let pX ,E, µq be a measure
space and let H be a Hilbert space. A function f : X Ñ H is said to be strongly measurable if
there exists a sequence of simple functions fn : X Ñ H such that fn converges to f pointwise,
i.e. for each x P X we have limnÑ8 fnpxq � fpxq.

As mentioned previously, we could also generalize the notion of a Borel σ-algebra and thus
de�ne the more familiar Borel measurability. Recall that the Borel σ-algebra on a metric
space, X , denoted by BpX q, is the smallest σ-algebra containing the open sets on the space.

De�nition 3.3.3 (Borel measurability of Hilbertian functions). Let pX ,E, µq be a measure
space and let H be a Hilbert space. A function f : X Ñ H is said to be Borel measurable if

@B P BpHq : f�1pBq P E.
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Finally there is a third form of measurability known as weak measurability that transforms
the concern of measurability to the well-known case of R-valued functions through the linear
functionals on H i.e. using the inner product.

De�nition 3.3.4 (Weak measurability of Hilbertian functions). Let pX ,E, µq be a measure
space and let H be a Hilbert space. A function f : X Ñ H is said to be weakly measurable

if the function xf, hy is measurable as a real-valued function for all h P H.

The interplay between these forms of measurability is well-studied and the crucial result is
the following theorem by Pettis.

Theorem 3.3.5 (Pettis measurability theorem). Let pX ,E, µq be a measure space and let
H be a Hilbert space. Let f : X Ñ H be some function.

We say that the function is separably valued if there exists a separable closed subset S of H
such that fpxq P S for all x P X .

The following are equivalent:

1. f is strongly measurable.

2. f is separably valued and weakly measurable.

3. f is separably valued and Borel measurable.

For a proof of the theorem, see [24]. The Pettis measurability theorem also holds for the
µ-almost everywhere equivalent properties above.

Remark 3.3.6 (Measurability on separable Hilbert spaces). When working in a separable
Hilbert space every function is separably valued, so the three notions of measurability coin-
cide. To avoid any measurability concerns we will henceforth assume that the Hilbert spaces
we are working on are separable. Thus we will simply call a function measurable if it satis�es
any of the three de�nitions and use them interchangeably.

With the measurability concerns out of the way, we will proceed to de�ne the Bochner integral
of a Hilbertian function by �rst de�ning integrability and the integral of a simple function.

De�nition 3.3.7 (Bochner integrals and integrability of simple functions). Let pX ,E, µq be
a measure space and let H be a Hilbert space. Any simple function f with decomposition

fpxq �
ķ

i�1

1Aipxqhi
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is said to be integrable if µpAiq   8 for all i P t1, . . . , ku and the Bochner integral of f is
de�ned as »

X
f dµ �

ķ

i�1

hiµpAiq.

We can extend this to a generic measurable function in the same way that this was done for
the usual Lebesgue integration theory.

De�nition 3.3.8 (Bochner integrability and integrals). Let pX ,E, µq be a measure space
and let H be a Hilbert space. Let furthermore f : X Ñ H be measurable. We say that f is
Bochner integrable if there exists a sequence pfnq8n�1 of simple and integrable functions such
that

lim
nÑ8

»
X
‖fn � f‖ dµ � 0.

In this case we de�ne the Bochner integral of f as»
X
f dµ � lim

nÑ8

»
X
fn dµ.

Let us prove that the above construction is well-de�ned in the sense that the integral of
the simple functions does not depend on its representation and the integral of a measurable
function does not depend on the speci�c approximating sequence of simple functions.

Theorem 3.3.9 (Bochner integrals are well-de�ned). Let pX ,E, µq be a measure space
and let H be a Hilbert space. The Bochner integral of both simple functions and general
measurable functions from X to H is well-de�ned.

Proof.

The integral of simple functions is independent of the representation by the same arguments
that are used for the Lebesgue integral, see for instance [23] Lemma 9.1.

We still need to prove that the limit in the de�nition of the Bochner integral exists for
non-simple f and is independent of the choice of approximating sequence. To that end let
f : X Ñ H be Bochner integrable and let pfnq8n�1 be an approximating sequence of simple
functions.

We start by showing that the integrals of the simple functions form a Cauchy sequence. Note
that for any simple function fn, we have from the triangle inequality∥∥∥∥»

X
fn dµ

∥∥∥∥ ¤ »
X
‖fn‖ dµ.

In particular this holds for fn�fm for m,n P N and therefore again by the triangle inequality∥∥∥∥»
X
fn dµ�

»
X
fm dµ

∥∥∥∥ ¤ »
X
‖fn � fm‖ dµ ¤

»
X
‖fn � f‖ dµ�

»
X
‖f � fm‖ dµ,
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which goes to zero by assumption. This shows that the integrals are a Cauchy sequence and
since H is complete, the limit exists.

If pgnq8n�1 was another approximating sequence of simple functions, we could represent both
fn and gn using the same sets and the triangle inequality would thus still be applicable to
the integral of their di�erence. We would get∥∥∥∥»

X
fn dµ�

»
X
gn dµ

∥∥∥∥ ¤ »
X
‖fn � gn‖ dµ ¤

»
X
‖fn � f‖ dµ�

»
X
‖f � gn‖ dµ,

which again converges to zero, showing that the limit is the same for all approximating
sequences.

The criterion of integrability is rather unwieldy in practice but fortunately we have the
following theorem, that gives an easier condition to check.

Theorem 3.3.10 (Hilbertian functions are integrable if their norm is integrable). Let
pX ,E, µq be a measure space and let H be a Hilbert space. Let f : X Ñ H be a mea-
surable function and assume that

³
X ‖f‖dµ   8. Then f is Bochner integrable.

For a proof of this, see [12]. The Bochner integral has all of the nice properties of the usual
integral including dominated convergence and the triangle inequality:

Theorem 3.3.11 (Dominated convergence theorem for Bochner integral). Let pX ,E, µq be
a measure space and let H be a Hilbert space. Let fn : X Ñ H be a sequence of Bochner
integrable functions that converges to some f : X Ñ H. If there exists a non-negative
Lebesgue integrable function g such that ‖fn‖ ¤ g for all n µ-a.e., then f is Bochner integrable
and »

X
f dµ � lim

nÑ8

»
X
fn dµ.

Theorem 3.3.12 (Triangle inequality for Bochner integral). Let pX ,E, µq be a measure
space and let H be a Hilbert space. Let f : X Ñ H be a Bochner integrable function. Then∥∥∥∥»

X
f dµ

∥∥∥∥ ¤ »
X
‖f‖ dµ.

An application of dominated convergence yields that the Bochner integral is also well-behaved
when working with sequences of integrable functions.

Theorem 3.3.13 (Interchanging series and Bochner integrals). Let pX ,E, µq be a measure
space and let H be a Hilbert space with norm ‖�‖. Let fn : X Ñ H be a sequence of Bochner
integrable functions such that »

X

8̧

n�1

‖fn‖dµ   8,
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(by the usual theorems for Lebesgue integration, this is equivalent to
°8
n�1

³
X ‖fn‖ dµ   8)

then
°8
n�1 fnpxq converges µ-a.e. and

8̧

n�1

»
X
fn dµ �

»
X

8̧

n�1

fn dµ.

Proof.

De�ne the partial sums hnpxq �
°n
i�1 fipxq, the full series hpxq �

°8
n�1 fnpxq and the series

of norms gpxq � °8
i�1‖fnpxq‖.

Note �rst that the assumption of integrability of g implies that g is �nite µ-a.e. immediately.
This in turn implies that h is �nite µ a.e. and that hn Ñ h as nÑ8.

Note further that by the triangle inequality

‖hnpxq‖ ¤
ņ

i�1

‖fnpxq‖ ¤
8̧

i�1

‖fnpxq‖ � gpxq.

We can now apply dominated convergence; Theorem 3.3.11 and get that h is integrable and
that »

X
hdµ � lim

nÑ8

»
X
hnpxq dµ � lim

nÑ8

ņ

i�1

»
X
fipxqdµ �

8̧

n�1

»
X
fnpxq dµ

as desired.

One of the most desirable properties of the Bochner integral is the fact that it is well-behaved
when composed with operators.

Theorem 3.3.14 (Interchanging operators and Bochner integrals). Let pX ,E, µq be a me-
asure space and let H1 and H2 be Hilbert spaces. Let A P BpH1,H2q and let f : X Ñ H1

be a Bochner integrable function. Then A f is Bochner integrable and

A

�»
X
f dµ



�
»
X

A f dµ.

When we start working with covariances of Hilbertian random variables, we shall see many
random operators, i.e. operator-valued random variables. The following theorem shows that
Bochner integrals are also well-behaved for these mappings when the mapping takes values
in the space of Hilbert-Schmidt operators.

Theorem 3.3.15 (Interchanging integrals and operator-valued mappings). Let pX ,E, µq be a
measure space and letH1 andH2 be separable Hilbert spaces. Let F : X Ñ BHSpH1,H2q be
an operator-valued mapping and assume that it is Bochner integrable i.e.

³
X ‖F‖HS dµ   8.

Then for any h P H1 »
X

Fhdµ �
�»

X
F dµ



h.
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Proof.

Let h P H1 be given and de�ne the mapping G : BpH1,H2q Ñ H2 by G pF q � Fh. With
this de�nition the desired result becomes»

X
G pF q dµ � G

�»
X

F dµ



.

The result follows from Theorem 3.3.14 if we can show that G P BpBHSpH1,H2q,H2q since
BHSpH1,H2q is a Hilbert space. This holds since by de�nition

‖G ‖ � sup
FPBHSpH1,H2q,‖F‖HS�1

‖Fh‖2 ¤ sup
FPBHSpH1,H2q,‖F‖HS�1

‖F‖HS‖h‖1 � ‖h‖1   8,

where ‖�‖1 and ‖�‖2 denotes the norm in H1 and H2 respectively.

� 54 �



Probability and statistics on Hilbert spaces

In this chapter we will generalize the usual concepts of probability theory on Rd to abstract
in�nite-dimensional Hilbert spaces. We will show how to de�ne random variables with values
in in�nite-dimensional Hilbert spaces and prove several of their properties. We will also prove
the existence of conditional expectations for Hilbertian random variables and their properties.
Finally we will introduce simple statistics for Hilbertian random variables with a focus on
moment estimators and linear models between Hilbert spaces.

4.1 Hilbertian probability theory

In this section we generalize the well-known ideas from the theory of real-valued random
variables to random variables with values in a separable Hilbert space. In all that follows we
will only consider separable Hilbert spaces for the reasons mentioned in the previous chapter:
countable orthonormal bases and avoiding measurability concerns.

In the usual construction of measure-theoretic probability, random variables are de�ned as
measure functions from a probability space pΩ,F, P q into the real numbers with the Borel
σ-algebra, pR,Bq. This mapping then de�nes a push-forward probability measure XpP q on
pR,Bq such that

XpP qpBq � P pX P Bq � P ptω P Ω | Xpωq P Buq for all B P B.

This measure is then referred to as the distribution of the random variable. We will echo this
construction by de�ning random variables as Borel measurable mappings from the probability
space pΩ,F, P q into pH,BpHqq.
Obtaining an intuition about a σ-algebra may be di�cult but it is often helpful to know some
generators of the σ-algebra to discover which sets are "fundamental" to the σ-algebra. By
de�nition BpHq is generated by the open sets on H but even that is not particularly helpful,
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since these are in themselves quite unwieldy. It turns out that the σ-algebra is also generated
by the pre-images of the open sets on R under the linear functionals on H.

Theorem 4.1.1 (Generator of BpHq). Let H be a Hilbert space, let O denote the open sets
on R and for each h P H de�ne φhpxq � xx, hy, i.e. φh is the linear functional associated
with h through Riesz representation theorem. Let M be the family of sets given by

M � tφ�1
h pOq | h P H, O P Ou.

Then σpMq � BpHq.

See [12] for a proof of this. We can now state a handy characterization of measurability wrt.
pH,BpHqq.

Theorem 4.1.2 (Measurability wrt. BpHq and distributions on H). Let X be a mapping
from some probability space pΩ,F, P q into the separable Hilbert space H with the Borel
σ-algebra: pH,BpHqq. Then

1. X is measurable if and only if xX,hy is measurable for all h P H.

2. IfX is measurable, its distribution is uniquely determined by the marginal distributions
of xX,hy for h P H.

See [12] for a proof. Theorem 4.1.2 states, that we can transform many of our problems on
H to problems on R, where we have a large and well-known toolbox of results to apply. We
can now de�ne a Hilbertian random variable:

De�nition 4.1.3 (Hilbertian random variable). Let pΩ,F, P q be a probability space and
let pH,BpHqq denote the measurable space consisting of a Hilbert space H and the Borel
σ-algebra on H. A measurable mapping X : Ω Ñ H is denoted a Hilbertian random variable.

We saw in Theorem 4.1.2 that a Hilbertian random variable X is characterized uniquely by
applying the inner product to X and elements of H. By Riesz representation theorem this
amounts knowing the distribution of φpXq for all φ P H�. Thus the behaviour of the linear
functionals on X uniquely determines the distribution and this leads to following de�nition.

De�nition 4.1.4 (Gaussian Hilbertian random variables). Let X be a Hilbertian random
variable on H. We say that X is Gaussian or normal if xX,hy is normally distributed (in
the usual sense) for all h P H.

We are used to characterizing a Gaussian random variable by its mean and variance on R, so
ideally we would like to �nd something akin to a mean and a variance for Hilbertian random
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variables to characterize Gaussians on H. These should be well-behaved when applying the
linear functionals, so that we can easily �nd the mean and variance of xX,hy for each h P H.

Let us �rst consider the mean. We would like to construct a functional of functionals � a
functional that takes an element x�, hy of H� and returns the mean of xX,hy. It is easy to
see that from the linearity of the usual expectation on R that this is a linear functional on
H�. Note also that by the triangle inequality for integrals and Cauchy-Schwarz inequality,
we have

|EpxX,hyq| ¤ E|xX,hy| ¤ E‖X‖‖h‖.

This implies that the functional is bounded if the norm of X has �nite �rst moment. We
could instead view this as a mapping from H into R that sends h to EpxX,hyq which would
still be a bounded linear functional, since the inner product is bilinear, thus the mean is also
a bounded linear functional on H. By Riesz representation theorem this implies that there
exists a unique representer µ P H so that we can express the mean of xX,hy simply as xµ, hy
for any h P H.

This is an implicit de�nition of the mean (which would de�ne the Pettis integral of X) but
we have already developed the theory of Bochner integration, so we instead de�ne the mean
of X as a "weighted" average of the outcomes of the random variable, just as it was done in
the univariate case. This leads to the following de�nition.

De�nition 4.1.5 (Mean of Hilbertian random variable). Let X be a Hilbertian random
variable and assume that E‖X‖   8. The mean element or expectation of X is given by the
Bochner integral

EpXq :�
»

Ω

X dP.

It turns out that the implicit de�nition and the Bochner de�nition are the same in our case.

Theorem 4.1.6 (Characterization of the mean of Hilbertian random variable). Let X be a
Hilbertian random variable with values in H and assume that E‖X‖   8. Let µ � EpXq.
Then for any h P H

xµ, hy � EpxX,hyq.

Proof.

The proof is straightforward by noting that the inner product de�nes a linear functional for
each h P H and then the result follows from Theorem 3.3.14.

The de�nition of the mean using the Bochner integral is preferred over the implicit de�nition,
since we have theorems stating the behaviour of the Bochner integral when composing with
linear functionals as applied in the previous proof. The derivation above leads to the nice
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dual view of the mean as both a measure of central tendency and as the representer for the
functional that takes each h to the mean of xX,hy.
We are left with the issue of computing the variance of xX,hy for any h P H. We could try
to de�ne a functional as with the implicit de�nition of the mean that maps h to VarpxX,hyq
but unfortunately this is not a linear operation. Note however that this is a quadratic form,
since if we de�ne the bilinear form ph, kq ÞÑ CovpxX,hy, xX, kyq then the variance is simply
the bilinear form applied to ph, hq. The bilinear form is nicer than the quadratic form but
note that if the bilinear form is bounded, there exists an operator K P BpHq so that the
bilinear form can be written xK h, ky. A calculation similar to the one done for the mean
will show that the bilinear form is bounded if ‖X‖ has �nite second moment. We can deduce
the exact form of the aforementioned operator, since by properties of the inner product and
the just proven property of the mean of a Hilbertian random variable, we get

CovpxX,hy, xX, kyq � E rpxX,hy � xµ, hyqpxX, ky � xµ, kyqs � EpxX � µ, hyxX � µ, kyq
� EpxxX � µ, hypX � µq, kyq � xEpxX � µ, hypX � µqq, ky.

Thus the operator is de�ned by the relation K h � xEpxX � µ, hypX � µqq. Note that since
pX � µq d pX � µq � xX � µ, �ypX � µq, we can calculate the mean above using a Bochner
integral over BHSpHq which we have shown is a separable Hilbert space, whenever H is
separable. This leads to the following de�nition.

De�nition 4.1.7 (Covariance operator of Hilbertian random variable). Let X be a Hilber-
tian random variable and assume E‖X‖2   8. Let µ � EpXq. We de�ne the covariance

operator of X as the Bochner integral

CovpXq :� EppX � µq d pX � µqq �
»

Ω

pX � µq d pX � µq dP.

It is not immediately obvious how the outer product and the expectation interact so to add
some intuition, we prove the following theorem.

Theorem 4.1.8 (Expectation of outer product of independent variables). Let X1 and X2

be Hilbertian random variables on H1 and H2, respectively.

Then for any h P H1

EpX1 d1 X2qh � EppX1 d1 X2qhq,
and if X1 KK X2, we have

EpX1 d1 X2q � EpX1q d1 EpX2q.

Proof.

The �rst claim follows immediately from Theorem 3.3.15. Letting x�, �y denote the inner
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product on H1, the second claim holds since for every h P H1

EpX1 d1 X2qh � EppX1 d1 X2qhq � Epxh,X1yX2q
� EpxX1, h1yqEpX2q � pEpX1q d1 EpX2qqh,

where the second to last inequality is due to the independence of X1 and X2.

Note that Theorem 4.1.8 still holds when X2 is not random. Let us now prove that the
covariance does in fact satisfy the implicit de�nition given in the motivation and some other
properties of the covariance operator.

Theorem 4.1.9 (Properties of covariance operator). Let X be a Hilbertian random variable
and assume E‖X‖2   8. Let µ � EpXq and K be the covariance operator of X. Then

1. xK h, ky � CovpxX,hy, xX, kyq.

2. K is non-negative-de�nite and trace-class with ‖K ‖TR � Var‖X‖.

3. K � EpX dXq � µd µ.

4. K � 0 if and only if P pX � µq � 1.

Proof.

1. By using Theorem 4.1.8, Theorem 4.1.6 and various properties of the inner product,
we get

xK h, ky � xErxh,X � µypX � µqs, ky � Erxh,X � µyxpX � µq, kys
� ErpxX,hy � xµ, hyqpxX, ky � xµ, kyqs
� ErpxX,hy � ErxX,hysqpxX, ky � ErxX, kysqs
� CovpxX,hy, xX, kyq,

which proves the result.

2. From the previous claim, we can see that the covariance is non-negative-de�nite. Let-
ting penqnPN, we also use the previous claim to calculate the trace norm and get

‖K ‖TR �
8̧

i�1

xK ei, eiy �
8̧

i�1

VarpxX, eiyq.

The sum of variances is dominated by the sum of second moments of xX, eiy which by
Parseval's identity is exactly E‖X‖2 which we have assumed to be �nite. This shows

� 59 �



4.1 Hilbertian probability theory

that the sum is �nite and algebraic manipulations are sensible. To get the exact value
we will juggle expectations and summations using Theorem 3.3.13 and apply Parseval's
identity to get

‖K ‖TR �
8̧

i�1

VarpxX, eiyq �
8̧

i�1

E
�pxX, eiy � xµ, eiyq2

�
� E

� 8̧

i�1

xX, eiy2
�
�

8̧

i�1

xµ, eiy2 � 2E

� 8̧

i�1

xµ, eiyxX, eiy
�

� E‖X‖2 � ‖µ‖2 � Varp‖X‖q,

as desired.

3. By linearity of the outer product and expectation, we have

K � EpX dXq � EpX d µq � EpµdXq � Epµd µq.

The �nal term is not random, so is simply equal to µdµ. Note that for h P H, we have

EpX d µqh � Epxh,Xyµq � xµ, hyµ � pµd µqh,

and similarly for the term Epµ d Xq, so both are equal to µ d µ, which proves the
statement.

4. If X � µ a.s. we can partition the integral in the de�nition of covariance operator into
a region where X � µ and one where X � µ and get that K is zero.

Assume instead that K is 0. Then by the �rst claim for any h P H,

0 � xK h, hy � VarpxX,hyq,

which implies that xX,hy is equal to EpxX,hyq � xµ, hy almost surely. Let peiqiPN be
an ONB for H and set A equal to the set of ω P Ω where xXpωq, eiy � xµ, eiy for all
i P N. Countable intersections of almost sure sets are almost sure so P pAq � 1. Then
for each ω P A, we have by applying the Fourier expansion

µ �
8̧

i�1

xµ, eiyei �
8̧

i�1

xXpωq, eiyei � Xpωq,

so X � µ almost surely.

With these de�nitions in mind we can note that just like in the univariate and multivariate
cases, we can characterize Gaussian distributions by their mean and covariance operator.
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Theorem 4.1.10 (Characterization of Hilbertian Gaussian random variables). Let H be
a Hilbert space. Given any µ P H and non-negative-de�nite K P BTRpHq there exists a
Hilbertian random variable X that is Gaussian with mean µ and covariance K . Conversely,
if X is Gaussian, X has �nite second moment so that the mean and covariance of X exist.
We denote this Gaussian with N pµ,K q.

Proof.

A proof can be provided by using characteristic functionals, see [28] Proposition 2.7, 2.8 and
Theorem IV.2.4.

Remark 4.1.11 (Non-existence of in�nite-dimensional standard Gaussian). If we assume
thatH is in�nite-dimensional, then we saw earlier that the identity operator I is not compact
and hence not a trace-class operator. Therefore there does not exist a Gaussian Hilbertian
random variable with covariance operator equal to the identity operator. We're used to the
idea of being given some arbitrary normal distribution and then "whitening" it by subtracting
the mean and multiplying by the square root of the inverse of the covariance to get a standard
normal distribution. This procedure is no longer available to us (since also the covariance is
non-invertible) and as such no in�nite-dimensional Gaussian is the "reference" Gaussian as
is the case in �nite dimensions.

We can also note that just as for independent �nite-dimensional Gaussian variables, we can
form linear combinations of independent in�nite-dimensional Gaussian variables and retain
the Gaussian distribution.

Theorem 4.1.12 (Linear combinations of independent Gaussians are Gaussian). Let X and
Y be independent Gaussian random variables on Hilbert spaces HX and HY respectively.
Let µX and µY denote the mean of X and Y respectively and let KX and KY denote the
covariance operators. Let AX and AY be bounded operators to a third Hilbert space H from
HX and HY respectively.

Then AXX �AY Y is a Hilbertian Gaussian with mean µ � AXµX �AY µY and covariance
operator K � AXKXA �

X �AY KY A �
Y .

Proof.

For a proof see [18] Proposition 4.8 and 4.9.

Earlier we showed how to construct an eigen-decomposition for non-negative operators, which
we can now use to decompose the covariance operator.

� 61 �



4.1 Hilbertian probability theory

Theorem 4.1.13 (Eigen-decomposition of covariance operator). Let X be a Hilbertian
random variable with second moment and let K denote the covariance of X. Then K

admits an eigen-decomposition

K �
8̧

j�1

λjej d ej ,

where pejq8j�1 is an orthonormal basis for ImpK q and the eigenvalues pλjq8j�1 are non-
negative and tending to zero with each eigenvalue having �nite multiplicity.

Using the orthonormal basis from the decomposition of the covariance operator lets us de-
compose a Hilbertian random variable into a sequence of real-valued random variables as
seen below.

Theorem 4.1.14 (Fourier expansion of random variables). Let X be a Hilbertian random
variable with second moment and let µ and K denote the mean and covariance of X re-
spectively. Let further pλjq8j�1 and pejq8j�1 be the eigenvalues and -vectors of the covariance
operator. Then with probability 1, we have

X �
8̧

j�1

xX, ejyej ,

where pxX, ejyq8j�1 are uncorrelated real-valued random variables with mean xµ, ejy and
variances λj .

Note that the above is an extension of the principal components decomposition of multiva-
riate random variables to the context of Hilbertian random variables. Those familiar with
the theory of stochastic processes will also note the similarity to the Karhunen-Loève de-
composition (as given in [12] Theorem 7.3.5). Using this decomposition we can derive the
distribution of the norm of a mean-zero Gaussian random variable, which we will use later.

Theorem 4.1.15 (Distribution of the norm of Hilbertian Gaussian). Let X be a Hilbertian
random variable with X � N pµ,K q on the space H with norm ‖�‖. Then letting pλjq8j�1 be
the eigenvalues of K and pZnqnPN be a sequence of iid. standard normal random variables,
we get

‖X � µ‖2 D�
8̧

i�1

λiZ
2
i .

Proof.

Using the previous theorem, we can use the eigen-decomposition of K and write

X � µ �
8̧

j�1

xX � µ, ejyej .
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Thus taking norms on either side and recalling Parseval's identity, we get using simple pro-
perties of the norm and the fact that xX � µ, ejy � N p0, λjq

‖X � µ‖2 �
∥∥∥∥∥ 8̧

j�1

xX � µ, ejyej
∥∥∥∥∥

2

�
8̧

j�1

‖xX � µ, ejyej‖2 D�
8̧

j�1

λiZ
2
i ,

as desired.

This will be applied later when constructing test statistics.

Having de�ned the mean and covariance of a single Hilbertian random variable, it is natural
when we need to consider questions of independence and conditional independence to ask how
two Hilbertian random variables behave together. Letting X1 and X2 denote two Hilbertian
random variables with values in separable Hilbert spacesH1 andH2 respectively, we can once
again consider the implications of Theorem 4.1.2 and settle for characterizing how xX1, h1y1
and xX2, h2y2 behave for every h1 P H1 and h2 P H2. Given two univariate real-valued
random variables, we often settle for calculating the covariance of the variables as a measure
of correlation. We could now repeat many of the arguments given above the de�nition of the
covariance operator to get a bilinear form, that takes a functional on H1 and a functional on
H2 and returns the covariance of the functionals applied to the respective random variables.
These arguments would lead us to de�ne a cross-covariance operator as below.

De�nition 4.1.16 (Cross-covariance operator). Let X1 and X2 be Hilbertian random vari-
ables on H1 and H2 respectively. Assume that both X1 and X2 have �nite second moment
and let µ1 and µ2 be the means of X1 and X2 respectively. We de�ne the cross-covariance
operator of X1 and X2 as the Bochner integral

CovpX,Y q :� EppX2 � µ2q d2 pX1 � µ1qq �
»

Ω

pX2 � µ2q d2 pX1 � µ1q dP.

Note that the integral above is well-de�ned since the outer product is an element ofBHSpH2,H1q
which is a separable Hilbert space. Let us prove some properties of the cross-covariance ope-
rator.

Theorem 4.1.17 (Properties of cross-covariance operators). Let X1 and X2 be Hilbertian
random variables on H1 and H2 with inner products x�, �y1 and x�, �y2 respectively. Assume
that both X1 and X2 have �nite second moment and let µ1 and µ2 be the means, K1

and K2 be the covariances and K12 the cross-covariance of X1 and X2 respectively, i.e.
K12 � CovpX1, X2q. Let further h1 P H1 and h2 P H2. Then

1. xK12h2, h1y1 � CovpxX1, h1y1, xX2, h2y2q.

2. |xK12h2, h1y1| ¤
axK1h1, h1y

axK2h2, h2y.
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3. K �
12 � K21 � EppX1 � µ1q d1 pX2 � µ2qq.

4. K12 � EpX2 d2 X1q � µ2 d2 µ1.

5. If X1 KK X2 then K12 � 0.

Proof.

The �rst four claims follow from arguments similar to Theorem 4.1.9. The �nal claim can
be seen to hold by applying Theorem 4.1.8.

As with real-valued random variables, we will be interested in sequences of Hilbertian random
variables and in particular their convergence properties. To that end let us de�ne the modes
of convergence for Hilbertian random variables.

De�nition 4.1.18 (Modes of convergence for Hilbertian random variables). Let pXnqnPN
be a sequence of Hilbertian random variables on H and let X be another Hilbertian random
variable. Let also ‖�‖ denote the norm on H. Then

1. If P plimnÑ8Xn � Xq � 1, we say that Xn converges to X almost surely and write
Xn

a.s.Ñ X.

2. If for any ε ¡ 0, we have limnÑ8 P p‖Xn �X‖ ¥ εq � 0, we say that Xn converges to

X in probability and write Xn
PÑ X.

3. If for any continuous, bounded function f : H Ñ R,

EpfpXnqq Ñ EpfpXqq, as nÑ8,

we say that Xn converges in distribution to X and write Xn
DÑ X.

These are straight-forward generalizations of the usual de�nitions for real-valued random
variables. We will omit a full disposition of these modes of convergence for Hilbertian random
variables and simply note, that we have almost all the results we're used to for real random
variables. In particular both the continuous mapping theorem and Slutsky's theorem still
hold (for proofs see for instance Theorem 2.7 and 3.1 in [2]).

Theorem 4.1.19 (Continuous mapping theorem). Let pXnqnPN be a sequence of Hilbertian
random variables on H and let X be another Hilbertian random variable. Assume that
Xn

DÑ X. Assume further H̃ is another Hilbert space and that f : H Ñ H̃ is a continuous
mapping. Then fpXnq DÑ fpXq.
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Theorem 4.1.20 (Slutsky's theorem). Let pXnqnPN and pYnqnPN be sequences of Hilbertian
random variables with values in H and let X be another Hilbertian random variable on the
space and h P H. Assume that Xn

DÑ X and Yn
PÑ h. Then

Xn � Yn
DÑ X � h.

We end the section with two generalizations of the classical large sample results: the Law of
Large Numbers and the Central Limit Theorem as seen in [12].

Theorem 4.1.21 (Law of Large Numbers in Hilbert spaces). Let pXnqnPN be a sequence
of Hilbertian random variables. Assume that the sequence is independent and identically
distributed and assume further that the common distribution has �nite �rst moment with
mean µ. Then

1

n

ņ

i�1

Xi
a.s.Ñ µ.

Theorem 4.1.22 (Central Limit Theorem in Hilbert spaces). Let pXnqnPN be a sequence
of Hilbertian random variables. Assume that the sequence is independent and identically
distributed and assume further that the common distribution has mean zero and �nite second
moment. Then

1?
n

ņ

i�1

Xi
DÑ G,

where G is a Gaussian Hilbertian random variable with mean zero and covariance operator
CovpXq � EpX dXq.

4.2 Conditional expectation for Hilbertian random

variables

In this section we develop and de�ne the theory of conditional expectations for Hilbertian
random variables.

There are several equivalent ways of de�ning and proving the existence of conditional ex-
pectations for integrable random variables, real-valued or Hilbertian. Most approaches use
the Radon-Nikodym theorem to prove existence of the conditional expectation, while others
will apply Hilbert space projection techniques. We will apply a more direct approach em-
ploying the theory of Bochner integration directly and utilizing that existence of real-valued
conditional expectations is already established.

Let us �rst de�ne the conditional expectation for a Hilbertian random variable.
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De�nition 4.2.1 (Conditional expectation of Hilbertian random variable). Let X be a
Hilbertian random variable de�ned on pΩ,F, P q with values in H. Let D � F be another
σ-algebra. Assume further that X has �nite �rst moment. A conditional expectation of X

given D is a Hilbertian random variable, Y , satisfying

1. Y is D-measurable and Bochner integrable.

2. For any D P D: »
D

X dP �
»
D

Y dP.

In the following proof we will employ that the set of equivalence classes of Bochner integrable
functions on a measure space form a Banach space.

Theorem 4.2.2 (L1 space for Bochner integrals). Let pX ,E, µq be a measure space, H a
Hilbert space and denote by L1pX ,E, µ;Hq the set of all Bochner integrable functions from
X to H with the Borel σ-algebra. De�ne L1pX ,E, µ;Hq as the set of equivalence classes of
L1pX ,E, µ;Hq where two functions are in the same equivalence class, if they are equal except
possibly on a null set.

L1pX ,E, µ;Hq forms a Banach space, i.e. it is a vector space under pointwise addition and
scalar multiplication that is complete with respect to the norm

‖f‖L1 �
»
X

‖f‖H dµ

for f P L1pX ,E, µ;Hq.

For a proof see [11] Theorem 3.7.7. We now prove that the conditional expectation of a
Hilbertian random variable exists and is unique.

Theorem 4.2.3. The conditional expectation of a Hilbertian random variable as de�ned in
De�nition 4.2.1 exists and is almost surely unique. We can therefore refer to the conditional
expectation and denote the conditional expectation of X given D by EpX | Dq.

Proof.

We follow the proof given in [22] Theorem 2.1. Throughout we denote the norm on H by
‖�‖H and the norm on L1pΩ,F, P ;Hq by ‖�‖L1 .

We have assumed that X has �nite �rst moment, i.e. it is integrable and thus by de�nition
there exists a sequence of simple functions pXnqnPN converging pointwise to X and further

lim
nÑ8

»
Ω

‖Xn �X‖H dP � 0.
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This amounts to Xn converging to X in L1 norm as given in Theorem 4.2.2.

Each Xn can be written

Xnpωq �
ķ

i�1

1Aipωqhi,

for A1, . . . Ak P F and h1, . . . hk P H. We �rst show that

EpXn | Dq �
ķ

i�1

Ep1Ai | Dqhi,

where each of the Ep1Ai | Dq are real-valued conditional expectations and thus well-de�ned.
The proposed expression is obviously D-measurable, so we show the integral property and
get for D P D by simple properties of the Bochner integral and the de�nition of Ep1Ai | Dq
that »

D

EpXn | Dq dP �
ķ

i�1

»
D

Ep1Ai | Dq dPhi �
ķ

i�1

»
D

1Ai dPhi �
»
Xn dP.

Similar calculations will show that if Xn and Xm are simple functions, we have

EpXn �Xm | Dq � EpXn | Dq � EpXm | Dq.

We also have a triangle inequality, since

‖EpXn | Dq‖H � ‖
ķ

i�1

Ep1Ai | Dqhi‖H ¤
ķ

i�1

Ep1Ai | Dq‖hi‖H � Ep‖Xn‖ | Dq.

Using the results above, we get

‖EpXn | Dq � EpXm | Dq‖L1 � ‖EpXn �Xm | Dq‖L1 ¤ E rEp‖Xn �Xm‖H | Dqs
� Ep‖Xn �Xm‖Hq � ‖Xn �Xm‖L1

where the last term goes to zero as n,mÑ 8 by construction, thus EpXn | Dq is a Cauchy
sequence in L1pΩ,D, P ;Hq. The space is complete by Theorem 4.2.2 so EpXn | Dq converges
and we de�ne the limit to be the conditional expectation of X given D, i.e. EpX | Dq :�
limnÑ8EpXn | Dq. The limit is almost surely unique and measurable with respect to D by
construction, so we just need to show the integral property.

For this note that for D P D, we have by the triangle inequality∥∥∥∥»
D

X dP �
»
D

EpX | Dq dP

∥∥∥∥
H

¤
∥∥∥∥»
D

X dP �
»
D

EpXn | Dq dP

∥∥∥∥
H
�
∥∥∥∥»
D

EpXn | Dq dP �
»
D

EpX | Dq dP

∥∥∥∥
H
.
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Note that the second integral in the �rst term is equal to
³
D
Xn dP , since each Xn is simple

and we showed already that conditional expectations exist for simple functions. Therefore
the �rst term becomes the L1 norm of X � Xn which goes to 0 by construction. The
second term goes to zero by de�nition of EpX | Dq � the term is exactly the L1 norm of
EpX | Dq � EpXn | Dq.

The de�nition of a conditional expectation is identical to the one given for real-valued random
variables and thus it is not surprising that many of the same properties apply. We get most
of the properties except the ones given by multiplication or monotonicity since unlike R, H
has no multiplication and is not ordered.

Theorem 4.2.4 (Properties of Hilbertian conditional expectation). Let X be a Hilbertian
random variable de�ned on pΩ,F, P q with values in H. Let D � F be another σ-algebra and
assume the �rst moment of X is �nite. Then

1. E‖EpX | Dq‖ ¤ E‖X‖

2. If D � E are sub-σ-algebras of F, we have EpX | Dq � EpEpX | Dq | Eq � EpEpX | Eq | Dq.

3. If X is D-measurable, then EpX | Dq � X.

4. If X is independent of D, then EpX | Dq � EpXq.

5. If H̃ is another Hilbert space and A P BpH, H̃q then EpAX | Dq � A pEpX | Dqq.

6. For any h P H, EpxX,hy | Dq � xEpX | Dq, hy

7. If H̃ is another Hilbert space and A is random variable with values in BpH, H̃q then
for any h P H, EpA h | Dq � EpA | Dqh.

8. If pXnqnPN is a sequence of integrable Hilbertian random variables, then E
�°8

n�1Xn

�� D� �°8
n�1E pXn | Dq.

Proof.

Most of these proofs proceed in the same manner. We will illustrate the idea by proving
5. We need to show that A pEpX | Dqq satis�es the requirements of being the conditional
expectation of AX given D. Measurability follows trivially, since A is continuous and pre-
images under continuous mappings of Borel sets are again Borel. Integrability follows by

Ep‖A pEpX | Dqq‖H̃q ¤ Ep‖A ‖‖EpX | Dq‖Hq
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since A is bounded and EpX | Dq is integrable. The conditional expectation and AX agree
on sets in D by Theorem 3.3.14 since»

D

AX dP � A

»
D

X dP � A

»
D

EpX | Dq dP �
»
D

A pEpX | Dqq dP

thus proving the result.

The remaining results go through the same steps; arguing for D-measurability using well-
known measurability arguments and then applying properties of the Bochner integral to show
th integral property.

Note that the �rst result proves that the conditional expectation is a contraction, i.e. taking
a conditional expectation of a random variable always reduces the norm. This further implies
that if the original variable is integrable, so is the conditional expectation, thus we can omit
showing integrability, when proving that a random variable is a conditional expectation.

A useful property of the real-valued conditional expectation is "pulling out what is known",
i.e. the fact that ifX is D-measurable and E|XY |   8, we have EpXY | Dq � XEpY | Dq. As
we already noted, there is no multiplication on H, we do however have scalar multiplication
and both an inner and an outer product, that do satisfy this "pulling out what is known"-
property, as we shall see below.

Theorem 4.2.5 ("Pulling out what is known"). LetX and Y be Hilbertian random variables
de�ned on pΩ,F, P q with values in H, let Z be a Hilbertian random variable on the same
probability space but with values in H̃ and let W be a real-valued random variable on the
same probability space. Assume that all the aforementioned random variables have �rst
moment. Let D be a sub-σ-algebra of F and denote the inner product of H by x�, �y and the
norms of H and H̃ by ‖�‖H and ‖�‖H̃ respectively. Then

1. EpW �X | Dq �W � EpX | Dq if W is D-measurable and E‖W �X‖H   8.

2. EpW �X | Dq � EpW | Dq �X if X is D-measurable and E‖W �X‖H   8.

3. EpxX,Y y | Dq � xX,EpY | Dqy if X is D-measurable and E p‖X‖H‖Y ‖Hq   8.

4. EpX dH Z | Dq � X dH EpZ | Dq if X is D-measurable and E p‖X‖H‖Z‖H̃q   8.

5. EpZ dH̃ X | Dq � EpZ | Dq dH̃ X if X is D-measurable and E p‖X‖H‖Z‖H̃q   8.

Proof.

We proceed to show that the proposed conditional expectations satisfy the requirements
given in the de�nition, i.e. D-measurability and integrals agreeing on all D-sets. Throughout
the following let peiq8i�1 be an orthonormal basis for H.
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For the �rst claim note that triviallyW �EpX |Dq is D-measurable. To prove that the integral
property holds, note �rst that for every D P D

»
D

W �X dP �
»
D

8̧

i�1

xW �X, eiy � ei dP �
8̧

i�1

»
D

W xX, eiydP � ei,

where we have expanded X using it's Fourier expansion and applied Theorem 3.3.13. Each
of the real-valued random variablesW xX, eiy has �nite �rst moment by the moment assump-
tion on W �X and Cauchy-Schwarz, thus there exists a real-valued conditional expectation
EpW xX, eiy | Dq whose integrals agree with W xX, eiy on D-sets. Furthermore, W is D-
measurable and can thus be pulled outside the integral and we get

»
D

W �X dP �
8̧

i�1

»
D

W xX, eiydP � ei �
8̧

i�1

»
D

WEpxX, eiy | Dq dP � ei

�
»
D

W �
8̧

i�1

xEpX | Dq, eiy � ei dP �
»
D

W � EpX | Dq dP

again by the Fourier expansion, Theorem 3.3.13 and by the way that conditional expectations
interact with the inner product. This proves the claim.

The second claim can be proven in a manner analogous to the �rst claim.

For the third claim note that xX,EpY | Dqy is trivially measurable if the inner product is
measurable, which follows if it is continuous. This can be seen by bilinearity of the inner
product, Cauchy-Schwarz and the triangle inequality, since letting xn Ñ x and yn Ñ y as
nÑ8, we get

|xxn, yny � xx, yy| � |xxn, yny � xxn, yy � xxn, yy � xx, yy|
¤ |xxn, yn � yy| � |xxn � x, yy| ¤ ‖xn‖‖yn � y‖� ‖xn � x‖‖y‖Ñ 0,

proving continuity. To show that the integrals agree on D-sets, we proceed as above and get

»
D

xX,Y y dP �
8̧

i�1

»
D

xX, eiyxY, eiy dP

by the Fourier expansion of the inner product and Theorem 3.3.13. We can note that the
integrand xX, eiyxY, eiy has �nite �rst moment by Cauchy-Schwarz and the assumption of
�rst moment of ‖X‖H‖Y ‖H. Thus there exists a conditional expectation EpxX, eiyxY, eiy | Dq
that agrees with xX, eiyxY, eiy on D-sets. Furthermore, we can pull out xX, eiy since X is
assumed D-measurable, so any measurable function of X is also D-measurable. Therefore we
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get »
D

xX,Y ydP �
8̧

i�1

»
D

xX, eiyEpxY, eiy | Dq dP

�
»
D

8̧

i�1

xX, eiyxEpY | Dq, eiydP �
»
D

xX,EpY | DqydP

again using the Fourier expansion of the inner product, Theorem 3.3.13 and the way condi-
tional expectations and inner products interact. This proves the claim.

For the fourth claim note as above that if the outer product is continuous, then X dH Z

is trivially D-measurable. An argument analogous to the one for the previous claim can
show that the outer product is continuous, this time using that we can explicitly calculate
the Hilbert-Schmidt norm of the outer product as the product of norms of the arguments
instead of Cauchy-Schwarz.

We will show that the integrals agree by showing that the resulting operator performs the
same operation on all h P H. For any D P D we get by Theorem 3.3.15�»

D

X dH Z dP



h �

»
D

pX dH ZqhdP �
»
D

xh,XyZ dP.

The integrand xh,XyZ has �nite �rst moment by Cauchy-Schwarz and the assumption of
�rst moment of ‖X‖H‖Z‖H̃. Thus there exists a conditional expectation Epxh,XyZ | Dq
that agrees with xh,XyZ on D-sets. Furthermore, we can pull out xh,Xy by the �rst claim,
since X is D-measurable. Thus we get»

D

xh,XyZ dP �
»
D

xh,XyEpZ | DqdP �
�»

D

X dH EpZ | Dq dP



h

by Theorem 3.3.15 as desired.

The �fth claim can be proven in a manner analogous to the fourth claim.

We will almost solely be interested in conditional expectations with respect to other random
variables, which we will de�ne as below. Note that we do not require the other random
variable to be real-valued or even Hilbertian.

De�nition 4.2.6 (Hilbertian conditional expectation given random variable). Let X be a
Hilbertian random variable de�ned on pΩ,F, P q with values in H. Let Y be another random
variable de�ned on the same probability space with values in the measure space pY,Eq.
Assume that X has �rst moment. Then we de�ne the conditional expectation of X given Y

as
EpX | Y q :� EpX | σpY qq
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where σpY q is the smallest σ-algebra making Y F-E-measurable, which we can write explicitly
as

σpY q � tY �1pEq | E P Eu.

A Hilbertian random variable X being measurable with respect to the σ-algebra generated
by another random variable Y implies that X can be written as a measurable function of Y ,
as we shall see below.

Theorem 4.2.7 (Doob-Dynkin lemma for Hilbertian random variables). Let X be a Hil-
bertian random variable de�ned on pΩ,F, P q with values in H and let Y be another random
variables on the same probability space with values in the measurable space pY,Eq. Then X
is σpY q measurable if and only if there exists a E�BpHq-measurable function φ : Y Ñ H so
that

X � φ � Y.

Proof.

Assuming that X � φ � Y , it is obvious that X is σpY q measurable.

For the other implication assume that X is σpY q measurable and consider the class of Hil-
bertian random variables given by

F � tφpY q | φ is E� BpHq-measurableu.

If we can show that

1. Z1, Z2 P F implies that Z1 � Z2 P F ,

2. pZnqnPN P F and Zn Ñ Z as nÑ8 implies that Z P F ,

3. 1D � h P F for all D P σpY q and all h P H,

then we will be done, since any σpY q-measurable random variable can be approximated by
a sequence of σpY q-measurable simple random variables.

Assume that Z1, Z2 P F , i.e. Z1 � φ1pY q and Z2 � φ2pY q, then we can write

Z1 � Z2 � φ1pY q � φ2pY q � pφ1 � φ2qpY q,

so since sums of measurable mappings are measurable, we have that Z1 � Z2 P F .

Assume now that pZnqnPN P F , i.e. each Zn � φnpY q, and Zn Ñ Z as n Ñ 8. Then we
note that F � plimnÑ8 φn existsq is in E, since each φn is measurable and we can write F
using countable intersections and unions. De�ning φ � limnÑ8p1Fφnq, we can write

Z � lim
nÑ8Zn � lim

nÑ8φnpY q � lim
nÑ8p1FφnqpY q � φpY q,
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thus proving that F is closed.

Finally each Z � 1D � h for some D P σpY q and h P H is in F , since D P σpY q implies that
there exists a set E P E such that D � pY P Eq and thus

Z � 1D � h � 1EpY q � h,
and therefore if φpyq � 1Epyq � h is E � BpHq-measurable, we will be done. This is obvious
since the pre-image of any set E P E under φ will either be thu or the empty set, both of
which are elements of the Borel σ-algebra.

For conditional expectations this leads to the following de�nition.

De�nition 4.2.8 (Conditional expectation given value of variable). Let X be a Hilbertian
random variable de�ned on pΩ,F, P q with values in H and let Y be another random variables
on the same probability space with values in the measure space pY,Eq. Assume that X has
�rst moment. The conditional expectation EpX | Y q then exists and is σpY q-measurable by
construction, so by Theorem 4.2.7 there exists a measurable function φ : Y Ñ H. We de�ne
EpX | Y � yq :� φpyq and call this the conditional expectation of X given Y � y.

As a natural generalization of the conditional covariance for real-valued random variables,
we can de�ne a conditional cross-covariance as below.

De�nition 4.2.9 (Conditional cross-covariance). Let X and Y be Hilbertian random varia-
bles de�ned on a common probability space pΩ,F, P q with values in HX and HY respectively.
Let D � F be another σ-algebra. Assume that X and Y have �nite second moment. We
de�ne the conditional cross-covariance operator of X and Y given D by

CovpX,Y | Dq � E ppY � EpY | Dqq dY pX � EpX | Dqq | Dq .

We can rewrite this in a similar way as done for the cross-covariance.

Theorem 4.2.10 (Alternative expression for the conditional cross-covariance). Let X and Y
be Hilbertian random variables de�ned on a common probability space pΩ,F, P q with values
in HX and HY respectively. Let D � F be another σ-algebra. Assume that X and Y have
second moment. We can write the conditional cross-covariance as

CovpX,Y | Dq � EpY dY X | Dq � EpY | Dq dY EpX | Dq

Proof.

Using linearity of the outer product in the de�nition of the conditional cross-covariance yields

CovpX,Y | Dq � EpY dY X | Dq � EpY dY EpX | Dq | Dq
� EpEpY | Dq dY X | Dq � EpEpY | Dq dY EpX | Dq | Dq.
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The �nal term is equal to EpY | DqdY EpX | Dq since the outer product is continuous and thus
measurable and therefore preserves the D-measurability of the two conditional expectations.
If we can show that both of the middle terms equal �EpY | Dq dY EpX | Dq, we will be
done. This follows immediately from Theorem 4.2.5.

We will later employ this conditional cross-covariance as the basis of the Hilbertian GCM,
since it shares the following crucial property with the real-valued version.

Theorem 4.2.11 (Conditional cross-covariance of conditionally independent variables). Let
X and Y be Hilbertian random variables de�ned on a common probability space pΩ,F, P q
with values in HX and HY respectively. Let D � F be another σ-algebra. Assume that X
and Y have second moment. Then if X KK Y | D, we have CovpX,Y | Dq � 0.

Proof.

We show that EpY dY X | Dq � EpY | Dq dY EpX | Dq by showing that they perform the
same operation on all h P HY . Taking h P HY and an orthonormal basis penqnPN, we note
that

EpY dY X | Dqh � EppY dY Xqh | Dq � Epxh, Y yX | Dq

� E

� 8̧

i�1

xh, Y yxX, eiyei | D
�
�

8̧

i�1

Epxh, Y yxX, eiy | Dqei,

by Theorem 4.2.4. We know that functions of random variables inherit conditional inde-
pendence by Theorem 2.1.10, so xX, eiy and xh, Y y are conditionally independent for all
i P N. They are also integrable by assumption so their conditional expectation factorizes by
Theorem 2.1.12. Therefore we get

8̧

i�1

Epxh, Y yxX, eiy | Dqei � Epxh, Y y | Dq
8̧

i�1

EpxX, eiy | Dqei

� xh,EpY | DqyE
� 8̧

i�1

xX, eiyei | D
�
� pEpY | Dq dY EpX | Dqqh

by various properties of the conditional expectation, thus proving that the conditional cross-
covariance is zero as desired.

Recall that to construct the univariate GCM, we saw that the product of the residuals of
conditionally independent random variables had mean zero. We will now show that the same
is true for the residuals of Hilbertian random variables under the outer product.

Theorem 4.2.12 (Product of residuals of conditionally independent Hilbertian variables is
zero). Let X and Y be Hilbertian random variables de�ned on a common probability space
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pΩ,F, P q with values in HX and HY respectively. Let D � F be another σ-algebra. Assume
that X and Y have second moment.

De�ne the residuals ε � X � EpX | Dq and ξ � Y � EpY | Dq.
Then if X KK Y | D, we have Epξ dY εq � 0.

Proof.

Note that by the tower property, it is su�cient to show that Epξ dY ε | Dq � 0. Now by
de�nition of the conditional cross-covariance and Theorem 4.2.11 we are done, since

Epξ dY ε | Dq � E prY � EpY | Dqs dY rX � EpX | Dqs | Dq � CovpX,Y | Dq.

4.3 Hilbertian estimation of moments and linear models

In this section we will discuss estimation of means and covariance for Hilbertian random
variables. Then we will generalize the canonical linear model on Euclidean spaces to linear
models for Hilbertian random variables. This will include the usual linear models as a special
case. We will describe the necessary theoretical assumptions to ensure that both the model
and estimation is well-de�ned, how to estimate in this framework and we will give a bound
on the mean-squared prediction error using this estimator.

In the context of statistics it is of great importance whether we can estimate various pro-
perties of a distribution consistently. We will throughout assume that we are given n i.i.d
observations of some Hilbertian random variable X. It is seen immediately from the law
of large numbers that we can estimate the mean of X consistently, assuming it exists. For
covariance operators the question is more subtle. Recall that the covariance was de�ned
as an integral over the space of Hilbert-Schmidt operators, which is a Hilbert space, so we
could once again apply the law of large numbers to note that covariances are estimated con-
sistently. By this we mean that the estimates converge to the true covariance operator in
Hilbert-Schmidt norm.

However we also noted that covariance operators are trace-class operators and a natural que-
stion becomes whether the estimates converge in trace norm to the true covariance operator.
This is not at all obvious and follows from another version of the law of large numbers in
Banach spaces. We will not go into the technical details of how to work with random varia-
bles on Banach spaces but much of the theory developed in the previous sections still holds,
in particular the modes of convergence given in De�nition 4.1.18 also hold in Banach spaces.
For more on random variables on Banach Spaces see [16] or [28].
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Theorem 4.3.1 (Law of Large Numbers in Banach spaces). Let pXnqnPN be a sequence of
random variables with values in a Banach space B. Assume that they are independent and
identically distributed and that they have �rst moment. Denote their common mean by µ.
Then

1

n

ņ

i�1

Xi
a.s.Ñ µ.

For a proof of 4.3.1, see [3] Theorem 2.4. Using this theorem we can get that covariance
estimation is also consistent in trace norm.

Corollary 4.3.2 (Consistency of covariance estimation). Let pXnqnPN be an i.i.d. sequence
of Hilbertian random variables with second moment. Let C denote the covariance operator
of the common distribution and de�ne the empirical estimate of the covariance operator as

pCn � 1

n

ņ

i�1

Xi dXi.

Then

‖ pCn � C ‖TR
a.s.Ñ 0.

We will now proceed to de�ne a regression method for general Hilbert spaces. We follow
the exposition given in [6], that is a generalization of the method given in [29]. This is a
generalization of the �nite-dimensional linear models and also of the functional linear model
with scalar response given in Theorem 2.3.4. The possible in�nite-dimensional nature of
these spaces makes estimation a tricky problem and we will not go into the full details here.
We give an account of this method since we will apply it in the empirical investigation of the
upcoming conditional independence test on Hilbert spaces.

De�nition 4.3.3 (Hilbertian linear model). Let X and Y be Hilbertian random variables
with values in HX and HY respectively and let S P BpHX ,HY q. Let furthermore ε be a
Hilbertian random variable with values in HY and ε KK X. Assume that

Y � SX � ε.

The statistical model with sample space HX �HY , σ-algebra BpHX �HY q and set of dis-
tributions satisfying the relation above is the Hilbertian linear model.

The above assumptions are the minimal assumptions required for de�ning the model but we
will need to impose further assumptions to construct an estimate of S and further still when
considering the mean square prediction error of a new observation.

From now on we assume that
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1. X and Y are centered, i.e. they have mean zero.

2. ε has �nite second moment and covariance operator Γε � Covpεq.
3. S is a Hilbert-Schmidt operator.

4. X has moment of all orders and has injective covariance operator Γ � CovpXq with
convex eigenvalues from some point on, i.e. if pλnqnPN is the sequence of eigenvalues of
Γ, the function that for j P N maps j to λj , continuously interpolated on R�, is convex
from some point on, i.e. there exists some N P N so that the function is continuous for
x ¡ N .

5. If we let pejqjPN denote a basis of eigenvectors of Γ, we assume that there exists a
constant b so that for all k, j P N we have

Ep|xX, ejy|kq ¤ k!

2
bk�2EpxX, ejy2q.

These assumptions are required to ensure that the model is identi�able (injectivity of Γ) and
that estimation is well-behaved. For the full proofs and details regarding these assumptions,
see [6]. If X is a Gaussian on HX with injective covariance, the assumptions on Γ and X
will be ful�lled.

We assume that we are given n i.i.d. samples from the model, pXi, Yiq1¤i¤n and attempt
to estimate S pX�q where X� is a new independent observation from the model. Note that
in practice it matters whether we're interested in S or S pX�q when tuning the estimation
process. More regularization is needed when estimating S than when estimating S pX�q
for reasons discussed in [4].

De�nition 4.3.4 (Estimation in the Hilbertian linear model). Continuing from De�nition
4.3.3, we de�ne

∆ � CovpY,Xq
and empirical counterparts

Γn � 1

n

ņ

i�1

Xi dX Xi, and ∆n � 1

n

ņ

i�1

Xi dX Yi.

Then letting pknqnPN be a sequence of natural numbers diverging and ppλjqjPN and ppejqjPN be
the estimated eigenvalues and -vectors of Γn, we de�ne

Γ:n �
kņ

j�1

pλ�1
j pej dX ejq

and the estimator of S xSn � ∆nΓ:n.
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To motivate the estimator given above, consider that by the method of moments, we have
the equation

EpX dX Y q � EpX dX S pXqq � EpX dX εq.

The second term on the right hand side is zero, since we have assumed that X KK ε. The �rst
term becomes EpS Γq by linearity of S , so in total we get

∆ � S Γ.

If Γ was invertible, we would simply multiply either side by the inverse and have an estimator
but Γ is a covariance operator and thus compact and therefore has no inverse. The usage of
Γ: is a way around this problem, that is common in inverse problems.

The following result is a combination of Theorem 2 and parts of the proof of Theorem 9 in
[6].

Theorem 4.3.5 (Prediction error in Hilbertian linear model). Consider the setup given in
De�nition 4.3.3 and De�nition 4.3.4. Letting pλj , ejqjPN denote the eigenvalues and -vectors
of Γ, we de�ne

γk � sup
j¥k

tj log j‖S pejq‖
a
λju.

Assume that pkn log knq2{n Ñ 0 and assume further that there exists some N P N so that
for all n ¥ N , we have

γkn ¤
pkn log knq2

n
,

then
?
nE‖ xSnpX�q �S pX�q‖2 Ñ 0.

Proof.

Theorem 2 in [6] states that for any k, we have

?
nE‖ xSnpX�q�S pX�q‖2 ¤ σ2

ε

k?
n
�?n

8̧

j�k�1

λj‖S pejq‖2�C1‖S ‖HSλk
k2

?
n
� C2?

n

pk log kq2
n

,

where σ2
ε � ‖Γε‖TR and C1 and C2 are constants that do not depend on S , k or n. It

is obvious from the assumption that pkn log knq2{n Ñ 0 that the fourth term goes to zero.
Noting that this also implies pkn log knq{

?
nÑ 0, which in turn implies kn{

?
nÑ 0, the �rst

term also goes to zero. The third term goes to zero by noting that λknkn Ñ 0, since pλjqjPN
are summable and again by the previous argument.
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The second term is the tricky one to deal with and arguments are given in the proof of
Theorem 9 in [6], that show that using the assumption on γkn , we have that

n

k

8̧

j�k�1

λj‖S pejq‖2 Ñ 0,

which implies that the second term also goes to zero, proving the result.

The assumptions in Theorem 4.3.5 are mainly there to ensure that pkn log knq2{n goes to
zero at the correct rate. We will apply this theorem in the next chapter where we extend
the GCM to Hilbert spaces.
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In this chapter we extend the GCM to data with values in Hilbert spaces.

5.1 Definition and properties of the GHSCM

We have now developed the tools required to extend the GCM to Hilbertian random variables.
We will consider X and Y Hilbertian random variables de�ned on pΩ,F, P q with values in
two Hilbert spaces HX and HY of possibly in�nite dimension. We further have a random
variable Z de�ned on the same probability space with values in a space Z that is only used
for prediction i.e. conditioning. The requirements on Z are identical to the univariate GCM;
that we can construct a sub-σ-algebra of F that we can use for conditioning and that we
have a regression method with a suitable rate of convergence when regressing X on Z and
Y on Z. The regression requirement will typically be the limiting one but if we assume that
Z is a third Hilbert space, we have the regression methods explained in Section 4.3. We will
thus simply assume that Z is in a measurable space pZ,Gq.
The Generalised Hilbert Space Covariance Measure (GHSCM) retains the gist of the GCM
for univariate random variables but is considerably more complicated due to the fact that
we cannot normalize the asymptotic limit distribution like in the univariate case. In the
univariate case we considered a covariance estimator of residuals (which is an operator when
R is viewed as a Hilbert space) that we argued had a limiting normal distribution with some
variance in Theorem 2.3.2. The test-statistic was constructed to whiten the asymptotic
distribution so that the Gaussian limit was always standard. On an in�nite dimensional
Hilbert space this is impossible, since there is no standard Gaussian in in�nite dimensions.

We will proceed in a manner similar to the univariate case but without normalization the
asymptotic distribution of our test statistic becomes quite di�erent.

De�nition 5.1.1 (GHSCM test statistic). Let X and Y be random variables with values
in two Hilbert spaces HX and HY with inner products x�, �yX and x�, �yY and norms ‖�‖X
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and ‖�‖Y respectively. Let Z be a random variable with values in measurable space (Z,Gq.
Consider the statistical model of all joint distributions HX �HY � Z, i.e.

P � tν probability measure on pHX �HY � Z,BpHXq b BpHY q bGu.

Consider the hypothesis X KK Y | Z with corresponding subset of probability measures P0.
For every ν P P, we can write

X � EνpX | Zqlooooomooooon
fνpZq

�X � EνpX | Zqloooooooomoooooooon
εν

,

i.e. fνpzq � EνpX | Z � zq and similarly

Y � EνpY | Zqlooooomooooon
gνpZq

�Y � EνpY | Zqloooooooomoooooooon
ξν

.

Let px, y, zqpnq P pH2�Zqn be a sample of size n from the model and let pf pnq and pgpnq denote
estimates of f and g based on the sample. For i � 1, . . . , n de�ne

R
pnq
i � pyi � pgpnqpziqq dY pxi � pf pnqpziqq

and de�ne

Tn �
∥∥∥∥∥ 1?

n

ņ

i�1

R
pnq
i

∥∥∥∥∥
2

HS

,

where ‖�‖HS is the Hilbert-Schmidt norm on BHSpHY ,HXq. This is the Generalised Hilbert

Space Covariance Measure (GHSCM) test statistic.

Theorem 5.1.2 (Asymptotic distribution of GHSCM test statistic). Continuing from De�-
nition 5.1.1, we de�ne for each ν P P

uνpzq � Eν
�
‖εν‖2 | Z � z

�
, vνpzq � Eν

�
‖ξν‖2 | Z � z

�
.

We further de�ne the mean-squared prediction error and weighted mean-squared prediction
error for f

Mf
ν,n �

1

n

ņ

i�1

∥∥∥fνpziq � pf pnqpziq∥∥∥2

and M̃f
ν,n �

1

n

ņ

i�1

∥∥∥fνpziq � pf pnqpziq∥∥∥2

vνpziq,

and

Mg
ν,n �

1

n

ņ

i�1

∥∥∥gνpziq � pgpnqpziq∥∥∥2

and M̃g
ν,n �

1

n

ņ

i�1

∥∥∥gνpziq � pgpnqpziq∥∥∥2

uνpziq,
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for g.

Assume that for each ν P P0, nMf
ν,nM

g
ν,n

PÑ 0, M̃f
ν,n

PÑ 0, M̃g
ν,n

PÑ 0 and 0   Eν
�
‖εν‖2‖ξν‖2

�  
8 then for every ν P P0, we have

Tn
DÑ

8̧

i�1

λiW
2
i ,

where pWnqnPN is an i.i.d sequence of standard normal variables and pλiq8i�1 is the non-
increasing sequence of eigenvalues for Covpξ dY εq.

Proof.

In the following we suppress dependence on ν P P0, since all the calculations are identical
for all measures.

Note that if we can show that 1?
n

°n
i�1 R

pnq
i converges to a Gaussian with mean zero and

covariance operator Covpξ dY εq, we will be done according to Theorem 4.1.15.

By arguments similar to the univariate GCM proof and linearity of the outer product, we
get

1?
n

ņ

i�1

R
pnq
i � 1?

n

ņ

i�1

ξi dY εiloooooooomoooooooon
Un

� 1?
n

ņ

i�1

pgpziq � pgpnqpziqq dY pfpziq � pf pnqpziqqloooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
an

� 1?
n

ņ

i�1

ξi dY pfpziq � pf pnqpziqqloooooooooooooooooooomoooooooooooooooooooon
bn

� 1?
n

ņ

i�1

pgpziq � pgpnqpziqq dY εilooooooooooooooooooomooooooooooooooooooon
cn

.

Since ν P P0, Theorem 4.2.12 yields that the sequence of Hilbert-Schmidt operators pξi dY
εiqiPN has mean zero and by assumption they are i.i.d with �nite variance, thus the Hilbertian
CLT gives that Un

DÑ G, where G is a Gaussian with mean zero and covariance operator
equal to the covariance of ξ dY ε. By Slutsky's theorem if an, bn and cn all converge to
0 in probability, we will be done. We will establish this by looking at the square of the
Hilbert-Schmidt norm of the sequences, since convergence of the squared norms to 0 implies
convergence of the sequences to 0.

Note that multiplicativity and sub-additivity of norms, Theorem 3.2.27 and Cauchy-Schwarz,
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we get

‖an‖2
HS �

∥∥∥∥∥ 1?
n

ņ

i�1

pgpziq � pgpnqpziqq dY pfpziq � pf pnqpziqq
∥∥∥∥∥

2

HS

¤ 1

n

8̧

i�1

‖pgpziq � pgpnqpziqq dY pfpziq � pf pnqpziqq‖2
HS

� 1

n

ņ

i�1

‖gpziq � pgpnqpziq‖2
Y ‖pfpziq � pf pnqpziqq‖2

X

¤ 1

n

ņ

i�1

‖gpziq � pgpnqpziq‖2
Y

ņ

i�1

‖pfpziq � pf pnqpziqq‖2
X � nMf

nM
g
n
PÑ 0,

by assumption. To establish that ‖bn‖2
HS goes to 0, we will apply Lemma 2.1.28 and show

that the conditional expectation given Xpnq and Zpnq goes to zero, which will imply the
desired result. We get by using the relationship between the Hilbert-Schmidt norm and
inner product and by linearity of both that

Ep‖bn‖2
HS | Xpnq, Zpnqq � 1

n
E

��∥∥∥∥∥ ņ

i�1

ξi dY pfpziq � pf pnqpziqq
∥∥∥∥∥

2

HS

| Xpnq, Zpnq

�

� 1

n

ņ

j�1

ņ

i�1

E
�
xξi dY pfpziq � pf pnqpziqq, ξj dY pfpzjq � pf pnqpzjqqyHS | Xpnq, Zpnq

	
� 1

n

ņ

j�1

ņ

i�1

E
�
xfpziq � pf pnqpziq, fpzjq � pf pnqpzjqyXxξi, ξjyY | Xpnq, Zpnq

	
� 1

n

ņ

j�1

ņ

i�1

xfpziq � pf pnqpziq, fpzjq � pf pnqpzjqyXE �xξi, ξjyY | Xpnq, Zpnq
	
,

where the second to last equality to due to Theorem 3.2.27 and the last equality holds since
the terms involving fpziq � pf pnqpziq are measurable wrt. the σ-algebra generated by Xpnq

and Zpnq. xξi, ξjy only depends on Zi and Zj of the conditioning variables, so we can omit
the remaining variables form the conditioning expression.

For i � j, by using that EpYi | Ziq � EpYi | Zi, Zjq since Zj is independent of pYi, Ziq and
Theorem 4.2.5, we get

E
�
xξi, ξjyY | Xpnq, Zpnq

	
� ErxYi, YjyY � xYi, EpYj | ZjqyY
� xEpYi | Ziq, YjyY � xEpYi | Ziq, EpYj | ZjqyY | Zi, Zjs
� EpxYi, YjyY | Zi, Zjq � xEpYi | Zi, Zjq, EpYj | Zi, ZjqyY .

We will show that this is zero, by �rst recalling that by assumption pYi, Ziq KK pYj , Zjq, so
applying weak union and symmetry from Theorem 2.1.9, we get Yi KK Yj | pZi, Zjq. Take
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now some orthonormal basis for HY , pekqkPN and note that

EpxYi, YjyY | Zi, Zjq � E

� 8̧

k�1

xYi, ekyY xYj , ekyY | Zi, Zj
�
�

8̧

k�1

E pxYi, ekyY xYj , ekyY | Zi, Zjq .

Note that for all k, xYi, ekyY and xYj , ekyY are conditionally independent given pZi, Zjq, so
by Theorem 2.1.12, the conditional expectation factorizes and we get

8̧

k�1

E pxYi, ekyY xYj , ekyY | Zi, Zjq �
8̧

k�1

EpxYi, ekyY | Zi, ZjqEpxYj , ekyY | Zi, Zjq

�
8̧

k�1

xEpYi | Zi, Zjq, ekyY xEpYj | Zi, Zjq, ekyY � xEpYi | Zi, Zjq, EpYj | Zi, ZjqyY ,

by various rules for manipulating the conditional expectation.

We can thus omit all terms from the sum where i � j and therefore

Ep‖bn‖2
HS | Xpnq, Zpnqq � 1

n

ņ

i�1

‖fpziq � pf pnqpziq‖2
XE

�
‖ξi‖2

Y | Zi
� � M̃f

n
PÑ 0,

by assumption. An analogous argument can be repeated for cn, thus proving the desired
result.

The test statistic that we have constructed above di�ers from the one employed by the
regular GCM. First of all the limiting distribution depends on the underlying distribution
through the eigenvalues of the covariance of ξ dY ε, which could vary greatly depending on
the underlying distributions. Further, the limiting distribution has no known closed form
expressions associated with it � we have no density, distribution or quantile functions to
employ.

We can estimate the sequence of eigenvalues consistently by Theorem 4.3.2 and since the
sequence of eigenvalues tends to 0 su�ciently fast to ensure that the sequence is in `1,
we could approximate the in�nite sum of weighted chi squares with a truncated sum and
calculate quantiles through bootstrapping. Let us formalize the resulting test:

De�nition 5.1.3 (GHSCM). Continuing from Theorem 5.1.2, we denote by ppλnqnPN the
sequence of estimates of λ, the eigenvalues of Covpξ dY εq. The sequence pλn is �nite for
every n, so let kn denote the number of non-zero estimates and let pλnpiq denote the i'th
element of the sequence n'th sequence.

Let now α P p0, 1q and pbnqnPN a sequence of natural numbers diverging and denote by pqplq
pλn

and pqpuq
pλn

the empirical α{2 and 1�α{2 quantiles respectively, obtained through bootstrapping

the distribution of Vn �
°kn
i�1

pλnpiqW 2
i using bn samples.
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5.1 Definition and properties of the GHSCM

Then the Generalised Hilbert Space Covariance Measure is the test pψnqnPN given by

ψnppx, y, zqnq �
$&%0 if Tn P rpqplq

pλn
, pqpuq

pλn
s

1 otherwise.

The test above is constructed in a manner similar to the univariate GCM, that was con-
structed based on an asymptotic test statistic. However Tn is strictly speaking not a test
statistic, since its distribution depends on the underlying probability measure. While we did
�nd an expression for the asymptotic distribution of Tn, this is not su�cient to prove asymp-
totic pointwise level. To do so, we will need a few preliminary observations and lemmas.

Lemma 5.1.4. Let pWnqnPN be an i.i.d sequence of standard Gaussian random variables,
let pλnqnPN be a random sequence of absolutely summable, positive sequences independent
of pWnqnPN. Let further λ be a static absolutely summable, positive sequence. Then if

8̧

i�1

|λnpiq � λpiq| a.s.Ñ 0,

we have 8̧

i�1

λnpiqW 2
i

DÑ
8̧

i�1

λpiqW 2
i .

Proof.

Note that if we can show 8̧

i�1

λnpiqW 2
i �

8̧

i�1

λpiqW 2
i
PÑ 0,

by Slutsky's theorem, we will be done. To that end let ε ¡ 0 be given and note that by the
triangle inequality and Markov's inequality, we have

P

������ 8̧
i�1

λnpiqW 2
i �

8̧

i�1

λpiqW 2
i

����� ¥ ε

�
¤ E

�°8
i�1 |λnpiq � λpiq|�

ε
,

since EpW 2
i q � 1 and pWnqnPN is independent of pλnqnPN. If we can show that the integral

converges to 0, we will be done. Note that the Dominated Converge Theorem yields the
desired result if the sequence is dominated. By the triangle and reverse triangle inequalities,
note that ����� 8̧

i�1

|λnpiq| �
8̧

i�1

|λpiq|
����� ¤ 8̧

i�1

||λnpiq| � |λpiq|| ¤
8̧

i�1

|λnpiq � λpiq|,

which goes to zero almost surely by assumption, so
°8
i�1 |λnpiq| Ñ

°8
i�1 |λpiq| and thus we

can choose N parrying ε � 1, to get
8̧

i�1

|λnpiq| ¤
8̧

i�1

|λpiq| � 1,
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5.1 Definition and properties of the GHSCM

for all n ¥ N . Set

C � max
n N

# 8̧

i�1

|λnpiq|
+
,

and note that by the triangle inequality

8̧

i�1

|λnpiq � λpiq| ¤
8̧

i�1

|λnpiq| �
8̧

i�1

|λpiq| ¤ 2
8̧

i�1

|λpiq| � C � 1,

thus proving the statement.

Lemma 5.1.5. Let fn : R Ñ R be a sequence of non-decreasing functions converging
uniformly to a strictly increasing limit function f : RÑ R. Then the sequence of generalised
inverses f�n converges pointwise to f�.

Proof.

Consider a �xed y0 P R and let ε ¡ 0 be given. We need to show that there exists N P N so
that for all n ¥ N , we have

|f�n py0q � f�py0q| ¤ ε.

Let x0 � f�py0q and note that since f is strictly increasing, we can �nd δ ¡ 0, so that

f px0 � εq � δ   y0loomoon
�fpx0q

  f px0 � εq � δ.

Now choose N P N from the uniform convergence of fn to f , such that supxPR |fnpxq�fpxq|  
δ. For n ¥ N we now have fnpx0�εq   fpx0�εq�δ   y0 and fnpx0�εq ¡ fpx0�εq�δ ¡ y0.
So by applying f�n to either side we get

x0 � ε   f�n py0q   x0 � ε,

and therefore
|f�n py0q � f�py0q| � |f�n py0q � x0|   ε,

as desired.

The lemma above in particular applies to distribution functions in the sense that if a sequence
of distribution functions converges uniformly to the distribution function of a continuous
distribution (which is thus strictly increasing), we have that the quantile functions converge
pointwise.

We are now ready to prove that the GHSCM has asymptotic pointwise level.

Theorem 5.1.6 (Pointwise asymptotic level of GHSCM). Continuing from De�nition 5.1.3,
under the assumptions of Theorem 5.1.2 the GHSCM has pointwise asymptotic level.
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5.1 Definition and properties of the GHSCM

Proof.

If we can show, that for any ν P P0, we have

lim
nÑ8Pνpψn � 1q � α

we will be done (we will omit the ν from here on).

Note that

P pψn � 1q � P
�
Tn R

�pqplq
pλn
, pqpuq

pλn

�	
� 1� FTn

�pqpuq
pλn

	
� FTn

�pqplq
pλn

	
where FTn denotes the CDF of Tn and pqplq

pλn
and pqpuq

pλn
denote the estimates of the α{2 and

1� α{2 quantiles of
°8
i�1 λiW

2
i using the bootstrap and the estimate pλ. Letting Fλ denote

the CDF of
°8
i�1 λiW

2
i and qλ denote a true quantile, we will be done, if we can show that

FTnppqpλq Ñ Fλpqλq for any quantile.

By the triangle inequality, we can write

|FTnppqpλq � Fλpqλq| ¤ |FTnppqpλq � Fλppqpλq| � |Fλppqpλq � Fλpqpλq| � |Fλpqpλq � Fλpqλq|.

The �rst term goes to zero by Theorem 5.1.2. For the second term, note that Glivenko-
Cantelli (see the appendix, Theorem A.1.21) yields uniform convergence of the empirical
distribution functions to the true distribution functions and Lemma 5.1.5 yields that the
corresponding quantile functions converge, since F

pλ is continuous for any λ that is not the
zero sequence. The term then goes to zero by continuity of Fλ. For the third term, Lemma
5.1.4 yields convergence of quantiles, since we know that pλ converges to λ in `1, since this is
equivalent to convergence of the estimated covariance operator in trace norm, which follows
from Corollary 4.3.2. The term then goes to zero by continuity of Fλ.

The above theorem proves that we have in fact constructed an asymptotically valid test.

Unlike the univariate GCM, we do not have the necessary tools to prove a uniform asymptotic
version of the GHSCM. To the best of the author's knowledge, no uniform limit theorems exist
on Hilbert spaces. While some results exist about the uniform validity of the bootstrap (see
[21] for instance), it is also unclear whether the eigenvalues of CovpξdY εq can be estimated
uniformly. Thus it is doubtful whether we can state satisfying conditions to ensure uniform
asymptotic level of the GHSCM.

Using the Hilbertian linear model, we can construct a complete example of a conditional
independence test.

Theorem 5.1.7 (GHSCM using the Hilbertian linear model). Let X, Y and Z be Hilbertian
random variables in three possibly distinct Hilbert spaces HX , HY and HZ respectively.
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Assume that regressing X on Z and Y on Z both satisfy the assumptions in Theorem 4.3.5
and assume further that uνpzq and vνpzq in Theorem 5.1.2 are bounded by some σ2 ¡ 0.
Then the GHSCM testing X KK Y | Z has pointwise asymptotic level.

Proof.

We will only need to show that
?
nMf

ν,n and
?
nMg

ν,n go to zero in probability, since the
remaining conditions then follow by the assumptions. This holds by Markov's inequality and
Theorem 4.3.5.

The author believes, that this is the �rst example of a conditional independence test for
Hilbertian data (and thus also for functional data, since these can be viewed as random
elements in a Hilbert space).

5.2 Empirical investigation of the GHSCM

In this section we will compare the performance of the GCM with the GHSCM through
a simulation study. We will consider Hilbertian random variables in `2, the prototypical
example of an in�nite-dimensional Hilbert space and throughout let penqnPN denote the
standard basis in `2 as described in Example 3.1.7. We will simulateX, Y and Z as Hilbertian
random variables in various ways as described later. The simulations will not be truly in�nite-
dimensional but we will instead simulate truncated versions of the variables. Throughout
the study we only simulate the �rst 50 components of the in�nite-dimensional variables
considered.

The main purpose of this simulation study is to investigate situations where the real-valued
GCM does not apply and where the GHSCM is more appropriate to use. Given n observations
of in�nite-dimensional Hilbertian random variables X, Y and Z we can perform a principal
components analysis and retain the k components with the most variation in each of the
variables. Denote these k principal components of the variables X 1, Y 1 and Z 1 respectively.
Supposing that we have a regression method that regresses X 1 on Z 1 and Y 1 on Z 1 that
satis�es the requirements for the GCM, we have a test with asymptotic level. However it
is not clear whether we are able to detect all cases where conditional independence is not
present. For instance, we could imagine that the dependence happens in the omitted parts
of the variables and we would never be able to detect it. We cannot increase the number
of principal components as n increases in the GCM, since then we no longer have a level
guarantee. The GHSCM combined with the Hilbertian linear model allows us to retain
asymptotic level while hopefully being able to detect more forms of dependence than the
regular GCM.
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5.2 Empirical investigation of the GHSCM

In the simulation study we will consider four models. We consider two models, where we can
theoretically justify the use of the GHSCM by Theorem 5.1.7. For both of these models we let
εX , εY and εZ be independent Hilbertian random variables with mean zero and covariance
operator

Γε �
8̧

n�1

1

2n
pen d enq.

Let furthermore Sk be the k-shift operator, i.e. Skppa1, a2, a3, . . . qq � pak, ak�1, ak�2, . . . q
and

Ak,c �
� 8̧

n�1

c

n
pen d enq

�
Sk.

We consider the models:

1.

Z � εZ

X � A1,1Z � εX

Y � A1,1Z � εY .

In this model H0 is true, i.e. X KK Y | Z.

2.

Z � εZ

X � A1,1Z � εX

Y � A1,1Z �A5,5X � εY .

In this model H0 is false, i.e. X ��KK Y | Z.

For these models Theorem 5.1.7 yields that we have asymptotic level if we choose kn sensibly.

Theorem 5.2.1 (GHSCM in model 1 and 2 has pointwise asymptotic level). Using kn �
rn2{5s in the estimation procedure of the Hilbertian linear model, the GHSCM in model 1
and 2 satisfy the conditions of Theorem 5.1.7 and thus we can test conditional independence
with pointwise level.

Proof.

It is su�cient to show that the conditions are satis�ed in model 2, since the regression X on
Z in model is identical to both regressions in model 1.

Consider �rst regressing X on Z. It is clear that Ak,c is Hilbert-Schmidt since it is the
composition of a Hilbert-Schmidt operator and a bounded operator. We also know that all
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5.2 Empirical investigation of the GHSCM

of the technical assumptions for the regression are ful�lled since Z is Gaussian and the noise
is mean zero Gaussian. We only need to ensure that we choose kn in a way satisfying that
both pkn log knq2{n Ñ 0 and that there exists some N so that γkn ¤ pkn log knq2{n for all
n ¥ N as in Theorem 4.3.5.

Recall that γk � supj¥ktj log j‖A1,1pejq‖
a
λju where pλj , ejq is the j'th eigenvalue and -

vector pair of the covariance of Z. By construction we have,
a
λj �

?
2�j and that the

eigenvectors are the basis vectors penqnPN. We also get ‖A1,1pejq‖ � 1
j�1 for j ¡ 1 and 0 if

j � 1. Thus γ1 � γ2 and for all k ¡ 1 and we have

γk � k log k

pk � 1q
?

2k
.

Since
4

25

logpnq2
n1{5 ¤ rn2{5s2 logprn2{5sq2

n
� pkn log knq2

n

and

γkn �
rn2{5s logprn2{5sq
prn2{5s� 1q

?
2rn2{5s

¤ pn2{5 � 1q logpn2{5 � 1q
pn2{5 � 1q

?
2n2{5

,

we will be done, if we can �nd N such that for all n ¥ N , we have

pn2{5 � 1q logpn2{5 � 1q
pn2{5 � 1q

?
2n2{5

¤ 4

25

logpnq2
n1{5 .

Such an N exists if
pn2{5 � 1q logpn2{5 � 1q

pn2{5 � 1q
?

2n2{5

25

4

n1{5

logpnq2 Ñ 0

as nÑ8. Equivalently we can show that

pm� 1q logpm� 1q
pm� 1q?2m

25

4

?
m

log
�
m5{2�2 Ñ 0

as mÑ8.

This is true since we can write

pm� 1q logpm� 1q
pm� 1q?2m

25

4

?
m

log
�
m5{2�2 � m� 1

m� 1

c
m

2m
logpm� 1q

logpmq2

where the �rst factor goes to 1, the second to 0 and the third to 0 by an application of
L'Hôpital's rule.

When regressing Y on Z, note that we can write

Y � pA1,1 �A5,5A1,1qZ �A5,5εX � εY .
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The noise is again Gaussian by Theorem 4.1.12 and therefore satis�es the conditions of the
regression. Z is still Gaussian and thus also satis�es the conditions of the regression. It
remains to show the condition on γkn . We can calculate γk as before except now de�ning
S � A1,1 �A5,5A1,1 we have

‖S pejq‖ �

$'''&'''%
0 if j � 1

1
j�1 if j P t2, 3, 4, 5, 6ub

1
pj�1q2 � 25

pj�1q2pj�6q2 otherwise

and thus γ1 � γ2 and for k P t2, 3, 4, 5, 6u γk is identical to when regressing X on Z and for
k ¡ 6

γk � k log k?
2k

d
1

pk � 1q2 �
25

pk � 1q2pk � 6q2 .

We can now proceed with similar arguments as before.

We also consider two further models where we do not have results guaranteeing the validity
of the GHSCM. Let ε̃X and ε̃Y be independent mean zero Hilbertian random variables with
covariance operator

Γε̃ �
5̧

n�1

pen d enq �
8̧

n�6

1

2n�5
pen d enq.

We consider the models:

3.

X � ε̃X

Z � A1,1X � εZ

Y � A1,1Z � ε̃Y .

In this model H0 is true, i.e. X KK Y | Z.

4.

X � ε̃X

Y � ε̃Y

Z � A5,5X �A5,5Y � εZ

In this model H0 is false, i.e. X ��KK Y | Z.
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It is unclear whether the mean square error of the Hilbertian linear model converges for
model 3 and 4 as it does for model 1 and 2.

While this simulation study is done in `2, we could just as well visualise it in L2r0, 1s since
these spaces are congruent. In Figure 5.1 we see 3 realizations from each of the four models
plotted in the Fourier basis of L2. In Figure 5.2 we write each of the models as a graphical
model to express the causal relations between the variables (for more on the use of graphical
models to express conditional independence, see [19].)

In the simulation study we compare the GCM and the GHSCM. For the GCM we perform
principal components analysis and retain the 5 components with most variation and employ
linear least-squares regression as the regressor. To compute the GCM for multivariate data we
construct the univariate GCM for each combination of components of the residual (yielding
25 components) and consider the sum of squares. The sum of squares is then evaluated in the
χ2-distribution with 25 degrees of freedom to determine whether the hypothesis is rejected.
For the GHSCM we apply the Hilbertian linear model directly with kn as in Theorem 5.2.1.
For each of the 4 models we sample 50, 100, 200, 300, 400 and 500 samples and repeat the
experiment 100 times. The results can be seen in Figure 5.3.

For model 1 and 3 where the null is true, we see that both the GCM and the GHSCM appear
to hold level. For model 2 and 4 where the null is false, we see that the GCM fails to reject
the null, while the GHSCM is able to detect the conditional dependence when n is large
enough. While model 2 and 4 were deliberately constructed so that the GCM would fail, we
see that the GHSCM allows for detecting more complex dependencies when working with
truly in�nite-dimensional data.
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Figure 5.1: Three samples from each of the models (each color marks a sample) viewed as
elements of L2r0, 1s using the Fourier basis B3 described in Example 3.1.8. Note that the
scale di�ers for each of the models.
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Z
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Z
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Figure 5.2: Graphs representing each of the four considered models. From left to right they
are model 1 through 4.
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Figure 5.3: Simulation results: While both the GCM and GHSCM hold level in model 1 and
3 only the GHSCM has the ability to detect the conditional dependence in model 2 and 4.
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Summary and outlook

In this thesis we constructed a conditional independence test with pointwise asymptotic
level for random variables with values in separable Hilbert spaces. We saw that it had
applications in the realm of functional data analysis and constructed explicit examples of
conditional independence tests for functional data in Theorem 2.3.5 and Theorem 5.1.7.
Through a simulation study we also saw that while PCA allows us to use the regular GCM
on functional data, we will be able to detect many more types of conditional dependence
using the GHSCM.

It would be interesting to extend these results further to Banach space valued random va-
riables. Banach spaces can be signi�cantly more complicated than Hilbert spaces and while
non-separable Hilbert spaces are very rare in practice, non-separable Banach spaces occur
more often, so generalizations allowing for non-separable spaces would also be interesting.
Many of the Hilbert space results in this thesis are motivated by the functional data paradigm
that view observed data as functions, typically as elements in the separable Hilbert space
L2r0, 1s. Results for separable Banach spaces would allow for the functions to be viewed
as elements of Cr0, 1s (the space of continuous real-valued functions on r0, 1s) and for non-
separable Banach spaces would allow for the functions to be viewed as elements of L8r0, 1s
(the space of (equivalence classes of) essentially bounded real-valued functions on r0, 1s).
It would also be relevant to see the results of the thesis applied to real data, for instance in
causal inference for functional data. There are numerous practical considerations that have
not been dealt with in this thesis, such as whether the results still hold when the functional
observations are obtained through smoothing of discrete observations. There are also possible
computational problems when computing the GHSCM test statistic and bootstrapping the
limiting distribution. The aforementioned problems and applications might be more easily
solved if one took a di�erent approach to functional data analysis than the one given in this
thesis. It is possible to view functional data as stochastic processes rather than Hilbertian
random variables and it would be interesting to see the theory of this thesis expressed in
that framework.

� 95 �



Appendix

A.1 Measure-theoretic probability theory

In the following, we review some of the fundamental theorems and de�nitions from measure
theory and probability theory, that we will use throughout the thesis. Proofs of the various
theorems are omitted for brevity. For a full treatment of the subjects mentioned in this
section, we refer to [9], [23] and [27].

A fundamental object in measure theory is the σ-algebra on a set, since this allows us to
de�ne a measurable space and then a measure on the space.

De�nition A.1.1 (σ-algebras, generators and measurable spaces). Let X be a set and let
E be a set of subsets of X . We say that E is a σ-algebra if E satis�es

1. X P E,

2. if A P E, then Ac P E,

3. if pAnqnPN is a sequence in E, then
�8
n�1An P E.

If E is a σ-algebra, the pair pX ,Eq is a measurable space.

If D is some set of subsets of X , we de�ne σpDq to be the smallest σ-algebra on X containing
D and say that D generates the σ-algebra σpDq.

For sets with added structure like topological or metric spaces, we would like to use a σ-
algebra that respects the structure. This leads to the de�nition of the Borel σ-algebra on a
space.

De�nition A.1.2 (Borel σ-algebra). Let X be a topological space and let O be the set of
all open subsets of X . We de�ne the Borel σ-algebra on X as

BpX q � σpOq.
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If X � R, we simply write B for the Borel σ-algebra on R.

For concrete spaces we will work exclusively with the Borel σ-algebra. To resolve whether a
given class of sets is a generator of a σ-algebra, we often resort to applying Dynkin's lemma.

Theorem A.1.3 (Dynkin's lemma). Let pX ,Eq be a measurable space. If D � E satis�es

1. X P D,

2. A,B P D with A � B implies BzB P D,

3. pAnqnPN P D with An � An�1 for all n implies YnPNAn P D,

we say that D is a Dynkin class. If H � D is stable under intersections, we have σpHq � D.

Once we have a measurable space, we can de�ne a measure on the space.

De�nition A.1.4 (Measure and measure space). Let pX ,Eq be a measurable space. A
function µ : EÑ r0,8q is a measure, if

1. µpHq � 0,

2. For any sequence of pairwise disjoint sets pAnqnPN in E, µ
��8

n�1An
� � °8

i�1 µpAnq.

The triple pX ,E, µq is a measure space.

If µpX q � 1, pX ,E, µq is a probability space and µ is a probabiliy measure.

On pRd,Bdq we de�ne the d-dimensional Lebesgue measure md as the unique measure assig-
ning sets of the form ra1, b1s � � � � � ran, bns measure

±n
i�1pbi � aiq.

A crucial part of measure theory is the interplay between mappings and measures. Since
measures are de�ned on σ-algebras these will be the crucial language to understand which
mappings are well-behaved and which are not.

De�nition A.1.5 (Measurable mappings). Let pX ,E and pY,Dq be two measurable spaces
and let f : X Ñ Y. We say that f is E-D-measurable if f�1pDq P E for all D P D.

We sometimes simply say that f is measurable when the σ-algebras are obvious.

It is straightforward to show that it is su�cient to check measurability on a generator of
D. From this we can see that continuous mappings must be measurable when considering
mappings between spaces equipped with Borel σ-algebras.
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Having de�ned measurable mappings, we can de�ne the Lebesgue integral for real-valued
functions. Constructing this integral relies on approximating measurable mappings by functi-
ons where the integral is straightforward.

De�nition A.1.6 (Simple functions and their integral). Let pX ,E, µq be a measure space
and let f : X Ñ R. If f can be written

fpxq �
ņ

i�1

ai1Aipxq,

for a1, . . . an P R and A1, . . . An P B are disjoint, we say that f is simple. We furthermore
de�ne the Lebesgue integral of the simple function f with respect to µ by»

f dµ �
ņ

i�1

aiµpAiq.

Theorem A.1.7 (Approximating Borel-measurable functions by simple functions). Let
pX ,E, µq be a measure space and let f : X Ñ R be Borel-measurable. Then there exists a
sequence of simple functions fn converging pointwise to f .

Using the above theorem, we can now de�ne the Lebesgue integral.

De�nition A.1.8 (Lebesgue integral). Let pX ,E, µq be a measure space and let f : X Ñ R
be Borel-measurable and non-negative. We de�ne the Lebesgue integral of f with respect to

µ by »
f dµ � sup

"»
g dµ | f ¤ g, g is simple

*
.

For general f , we let f�pxq � maxp0, fpxqq and f�pxq � maxp0,�fpxqq denote the positive
and negative parts of f respectively and if both these have �nite integrals, we de�ne»

f dµ �
»
f� dµ�

»
f� dµ.

These are the fundamental de�nitions of Lebesgue integration but to state some of the deeper
and often applied theorems, we will turn to random variables since they will be the main
way that we will see this theory in the thesis and it is thus convenient to express the results
in this language.

De�nition A.1.9 (Random variables). A random variable X : Ω Ñ X is a measurable map-
ping from the probability space pΩ,F, P q to the measurable space pX ,Eq. The distribution

of the random variable is the measure XpP q on pX ,Eq and we write X � ν to denote that
X has distribution ν.
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The vocabulary when working with random variables is sometimes di�erent from when wor-
king with general functions but we will use it extensively. In the following we concentrate
on real-valued random variables.

De�nition A.1.10 (Fundamental operations on real-valued random variables). Let X be
a real-valued random variable. The distribution function of the random variable X is the
function F : RÑ r0, 1s given by

F pxq � P pX ¤ xq.

The quantile function of the random variable X is the generalized inverse of the distribution
functions, i.e. it is the function Q : r0, 1s Ñ R given by

Qppq � inf
xPR

tp ¤ F pxqu .

The expectation EpXq of the random variable X, is the integral of X with respect to P , i.e.

EpXq �
»
X dP,

if E|X| is �nite, otherwise it is unde�ned.
If E|X|p is �nite for some p ¡ 0, we say that X has p-th moment.

If X has second moment, we de�ne the variance of X as

VarpXq � EppX � EpXqq2q,

and if Y is another real-valued random variable with second moment, we de�ne

CovpX,Y q � E rpX � EpXqqpY � EpY qqs .

These notions can be generalized to multivariate random variables, that take values in Rd.

One of the simplest and yet most often used inequalities, is Markov's inequality:

Theorem A.1.11 (Markov's inequality). Let X be a real-valued random variable. Then for
any ε ¡ 0 and p ¡ 0, we have

P p|X| ¥ εq ¤ E|X|p
εp

.

It is helpful to introduce the notion of independence, to distinguish random variables that
a�ect each other from those that have no e�ect on each other. Variables that do not a�ect
each other are independent. Independence is de�ned through σ-algebras as below.

De�nition A.1.12 (Independence of σ-algebras). Let pΩ,F, P q be a probability space and
let F1 and F2 be sub-σ-algebras of F. If
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P pF1 X F2q � P pF1qP pF2q, @F1 P F1, F2 P F2,

we say that F1 is independent of F2 and write F1 KK F2.

De�nition A.1.13 (Independence of random variables). Let X and Y be random variables
de�ned on the same probability space pΩ,F, P q with values in the measurable spaces pX ,Eq
and pY,Gq respectively. We say that the random variables X and Y are independent if the
σ-algebras σpXq and σpY q are independent and we write X KK Y .

We're often interested in sequences of real-valued random variables and how they behave in
the limit and to that end, we have a variety of convergence types.

De�nition A.1.14 (Convergence of real-valued random variables). Let pXnqnPN be a se-
quence of real-valued random variables and X another real-valued random variable.

1. If the set
tω P Ω | lim

nÑ8Xnpωq � Xpωqu

has probability 1, we say that Xn converges almost surely to X and write Xn
a.s.Ñ X.

2. If for every ε ¡ 0 we have

lim
nÑ8P p|Xn �X| ¥ εq � 0,

then we say that Xn converges in probability to X and write Xn
PÑ X.

3. If for every bounded, continuous function f : RÑ R, we have

EpfpXnqq Ñ EpfpXqq as nÑ8,

we say that Xn converges in distribution to X and write Xn
DÑ X.

Some of these notions of convergence imply each other.

Theorem A.1.15 (Relations between modes of convergence). Let pXnqnPN be a sequence
of real-valued random variables and X another real-valued random variable.

1.
Xn

a.s.Ñ X ùñ Xn
PÑ X

2.
Xn

PÑ X ùñ Xn
DÑ X
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Even though a sequence of integrable random variables converges, it is not obvious if the se-
quence of expectations converges. The following theorem gives easily checkable and su�cient
conditions to ensure convergence of expectations.

Theorem A.1.16 (Dominated Convergence Theorem). Let pXnqnPN be a sequence of real-
valued random variables and X and Z be two other real-valued random variables. Assume
that Xn

DÑ X, that |Xn| ¤ Z for all n P N and that Z has �rst moment. Then X has �rst
moment and

EpXnq Ñ EpXq as nÑ8.

Convergence in distribution is a very weak form of convergence but we will often use that it
is well-behaved when combined with a sequence converging in probability to a constant.

Theorem A.1.17 (Slutsky's theorem). Let pXnqnPN and pYnqnPN be sequences of real-valued
random variables and let X be another real-valued random variable such that Xn

DÑ X and
Yn

PÑ c for some c P R. Then

1.
Xn � Yn

DÑ X � c

2.
XnYn

DÑ cX

3.
Xn

Yn

DÑ X

c
, if c � 0

Sequences that are independent and identically distributed (i.i.d) are particularly well-behaved
as the following deep and often-applied results show.

Theorem A.1.18 (Law of Large Numbers (LLN)). Let pXnqnPN be a sequence of indepen-
dent, identically distributed, real-valued random variables. If E|X1|   8 then

1

n

ņ

i�1

Xi
a.s.Ñ EpX1q

Theorem A.1.19 (Central Limit Theorem (CLT)). Let pXnqnPN be a sequence of indepen-
dent, identically distributed, real-valued random variables. If E|X1|2   8 then

?
n

�
1

n

ņ

i�1

Xi � EpX1q
�

DÑ N p0,VarpX1qq

where N pµ, σ2q denotes the normal distribution with mean µ P R and variance σ2 where
σ ¡ 0.
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Much work has been dedicated to generalizing the CLT to settings where the distributions of
the variables in question are not necessarily the same. This lead to the central limit theorems
for triangular arrays.

Theorem A.1.20 (Lyapounov's central limit theorem). Let pXnkq1¤k¤n be a triangular
array of real-valued random variables. Set Sn �

°n
k�1Xnk. Assume that

1. For all n ¥ 1, the family pXnkqk¤n is independent.

2. EpXnkq � 0 for all 1 ¤ k ¤ n.

3. VarpSnq Ñ 1 as nÑ8.

4. There exists η ¡ 0 so that

lim
nÑ8

ņ

i�1

E|Xni|2�η � 0.

Then Sn
DÑ N p0, 1q.

Sometimes we would not only like to approximate a single expectation but a whole distribu-
tion simultaneously. For real-valued random variables this can be done using the empirical
distribution function, which the following theorem shows, approximates the true distribution
function in the i.i.d setting.

Theorem A.1.21 (Glivenko-Cantelli theorem). Let pXnqnPN be a sequence of indepen-
dent, identically distributed, real-valued random variables with common distribution function
F pxq. De�ne the empirical distribution function

Fnpxq � 1

n

ņ

i�1

1pXi¥xqpxq.

Then

sup
xPR

|Fnpxq � F pxq| a.s.Ñ 0.

This is the theoretical basis for the validity of bootstrapping.

We will also apply the theory of conditional expectations. The expectation represents our
"best guess" about the value of random variable when no information is given. The conditio-
nal expectation given a σ-algebra represents our best guess, given the information contained
in the σ-algebra.
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De�nition A.1.22 (Conditional expectation). Let X be a random variable de�ned on the
probability space pΩ,F, P q with values in pR,Bq. Assume further that X is integrable, i.e.
E|X|   8 and let D be a sub-σ-algebra of F. Then the conditional expectation of X given

D is denoted by EpX | Dq and is the almost surely unique random variable satisfying

1. EpX | Dq is D-measurable,

2. for every D P D »
D

EpX | Dq dP �
»
D

X dP.

If Y is another random variable on the same probability space with values in some measurable
space, we de�ne EpX | Y q to mean EpX | σpY qq.
If we write EpX | Y,Zq for a third random variable Z, we mean EpX | σpY,Zqq and similarly
if H is another sub-σ-algebra of F we write EpX | D,Hq to mean EpX | σpD,Hqq.

It is worthwhile to note that if X is real-valued and measurable wrt. to the σ-algebra
generated by a random variable Y on an arbitrary measure space, this implies that X can
be written as the composition of Y with a measurable function. This is the content of the
Doob-Dynkin lemma.

Theorem A.1.23 (Doob-Dynkin lemma). Let X be a real-valued random variable de�ned
on pΩ,F, P q and let Y be another random variable on the same probability space with values
in the measure space pY,Eq. Then X is σpY q-measurable if and only if there exists a E�B-
measurable function φ : Y Ñ R so that

X � φ � Y.

This lets us de�ne what is meant by a conditional expectation given that Y � y.

De�nition A.1.24 (Conditional expectation givne value of variable). Let X be a real-
valued random variable de�ned on pΩ,F, P q and let Y be another random variable on the
same probability space with values in the measure space pY,Eq. Assume that X has �nite
�rst moment, so that EpX | Y q exists. By the Doob-Dynkin lemma there exists a measurable
φ : Y Ñ R such that EpX | Y q � φ � Y . We de�ne EpX | Y � yq :� φpyq and call this the
conditional expectation of X given Y � y.

Conditional expectations have several nice properties.

Theorem A.1.25 (Properties of conditional expectation). Let X be a random variable
de�ned on the probability space pΩ,F, P q with values in pR,Bq. Assume further that X is
integrable, i.e. E|X|   8 and let D be a sub-σ-algebra of F. Then
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1. If H � D is a third σ-algebra, we have

EpX | Hq � EpEpX | Hq | Dq � EpEpX | Dq | Hq,

2. If σpXq and D are independent then

EpX | Dq � EpXq,

3. If X is D-measurable then
EpX | Dq � X,

4. If Y is another real-valued integrable random variable, XY is integrable and X is
D-measurable, we have

EpXY | Dq � XEpY | Dq.

We also have a version of dominated convergence for conditional expectations.

Theorem A.1.26 (Conditional dominated convergence theorem). Let pXnqnPN be a se-
quence of real-valued random variables de�ned on the probability space pΩ,F, P q and let
X be another such random variable. Assume further that for all n, Xn is integrable, X is

integrable and let D be a sub-σ-algebra of F. Assume that Xn

a.s.

X and |Xn| ¤ Y for all n for
some integrable real-valued random variable Y . Then

EpXn | Dq a.s.Ñ EpX | Dq.

A.2 Established results and definitions from analysis and

linear algebra

In the following we review some of the fundamental theorems and de�nitions from analysis
and linear algebra, that are used throughout the thesis. Proofs are omitted for brevity. For
a full treatment, see [23], [12] and [10].

The fundamental object of study in linear algebra is the vector space.

De�nition A.2.1 (Vector space). Let F be a �eld and let V be a set. Let � : V � V Ñ V

and � : F � V Ñ V be mappings. We say that V is a vector space over F if

1. @x, y, z P V : px� yq � z � x� py � zq

2. D0 P V @x P V : x� 0 � 0� x � x

3. @x P V Dy P V : x� y � y � x � 0
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4. @x, y P V : x� y � y � x

5. @x P V @a, b P F : a � pb � V q � pabq � V

6. @x, y P V @a P F : a � px� yq � a � x� a � y

7. @x P V @a, b P F : pa� bq � x � a � x� b � x

8. @x P V : 1 � x � x

The canonical examples of vector spaces are Rd over R with the usual addition and multipli-
cation. In this thesis we will solely consider vector spaces over R. Some vector spaces have
added structure such as the notion of a length (a norm) or a notion of orthogonality (an
inner product).

De�nition A.2.2 (Normed space). Let V be a vector space over F and let ‖�‖ : V Ñ F be
a mapping. We say that V is a normed space and that ‖�‖ is a norm on V if

1. ‖x‖ � 0 ðñ x � 0

2. @x P V @a P F : ‖ax‖ � a‖x‖

3. @x, y P V : ‖x� y‖ ¤ ‖x‖� ‖y‖

De�nition A.2.3 (Inner product space). Let V be a vector space over F and let x�, �y :

V � V Ñ F be a mapping. We say that V is an inner product space and that x�, �y is an

inner product on V if

1. @x P V : xx, xy ¥ 0

2. @x, y P V @a P F : xa � x, yy � axx, yy

3. @x, y, z P V : xx� y, zy � xx, zy � xy, zy

4. @x, y P V : xx, yy � xy, xy

where a denotes the conjugate of a.

Every inner product space is also a normed space, since setting ‖x‖ � axx, xy becomes a
norm. In inner product spaces we have the crucial Cauchy-Schwarz inequality.

Theorem A.2.4 (Cauchy-Schwarz inequality). Let V be an inner product space over F
with inner product x�, �y and corresponding norm ‖�‖. Then for all x, y P V , we have

xx, yy2 ¤ ‖x‖2‖y‖2.
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While we almost solely consider vector spaces in this thesis, there are some more general
concepts that are relevant to consider, in particular those related to limits and distances on
arbitrary spaces.

De�nition A.2.5 (Topology and topological spaces). Let X be some set. We say that a
collection of subsets τ is a topology if

1. H P τ and X P τ

2. The union (countable or uncountable) of arbitrary elements of τ is again in τ

3. Finite intersections of elements in τ are again in τ

pX , τq is called a topological space and the elements of τ are the open sets of X . If A is a
subset of X, then A is said to be closed if Ac P τ . For an arbitrary subset of X, A, we de�ne
the closure of A as the smallest closed set containing A and denote it Ā.

A topology is the fundamental tool for investigating convergence and continuity. When we're
working with uncountably in�nite spaces, we would like to reduce our problems to countable
problems. Broadly speaking this is possible in separable spaces.

De�nition A.2.6 (Dense sets and separability). Let pX , τq be a topological space. A set
A � X is said to be dense if Ā � X . pX, τq is said to be separable if it contains a countable,
dense subset.

While topologies are fundamental, we will often work with them indirectly by working with
a metric, that induces a topology.

De�nition A.2.7 (Metric space). Let X be a set and let d : X �X Ñ r0,8q be a mapping.
We say that M is a metric space and d is a metric if

1. dpx, yq � 0 ðñ x � y

2. @x, y P X : dpx, yq � dpy, xq

3. @x, y, z P X : dpx, zq ¤ dpx, yq � dpy, zq

A subset A of X is open in the metric space, if for every a P A, there exists ε ¡ 0 so that the
ε-ball around a is enclosed in A, i.e.

Bpa, εq � tx PM | dpa, xq   εu � A.
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The collection of all open sets using the metric forms a topology. One should also note that
any normed vector space is also a metric space by setting dpx, yq � ‖x � y‖. Metric spaces
give us a notion of distance on a space. We would like for the spaces we consider to have no
holes, which leads to the following de�nition.

De�nition A.2.8 (Sequences and completeness). Let X be a space with metric d and let
pxnqnPN be a sequence in X . We say that xn converges to x if

lim
nÑ8 dpxn, xq � 0.

We say that xn is a Cauchy sequence if

lim
n,mÑ8 dpxn, xmq � 0.

We say that X is complete if every Cauchy sequence converges to some x P X .

A.3 Auxiliary results

In this section we prove results from the main thesis, that were deemed to be too long in
relation to their importance.

Theorem A.3.1 (Equivalent de�nition of conditional independence). Let pΩ,F, P q be a
probability space and let F1, F2 and F3 be sub-σ-algebras of F. F1 KK F2 | F3 if and only if

P p1F1
| F2,F3q � P p1F1

| F3q, (�)

for all F1 P F1.

Proof.

We follow the same strategy as the proof given in [5] Proposition 2.3.28.

Assuming that p�q holds, we get conditional independence straight away by properties of
conditional expectation, since for any F1 P F1 and F2 P F2, we have

Ep1F1
1F2

| F3q � EpEp1F1
1F2

| F2,F3q | F3q � EpEp1F1
| F2,F3q1F2

| F3q
� EpEp1F1

| F3q1F2
| F3q � Ep1F2

| F3qEp1F1
| F3q.

Assuming instead conditional independence, we will prove p�q using a Dynkin class argument.
Letting F1 P F1 be given, note �rst that the set

H � tF2 X F3 | F2 P F2, F3 P F3u
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generates σpF2,F3q. This holds since it is straightforward to see that any set in F2YF3 must
also be in H, so σpF2,F3q � H. It is also straightforward to see that H � σpF2,F3q. H is also
stable under intersections, so Dynkin's lemma yields that σpHq � σpF2,F3q.
Returning to the problem, we need to show that Ep1F1 | F2,F3q � Ep1F1 | F3q and will do
so straight from the de�nition. Obviously Ep1F1 | F3q is σpF2,F3q-measurable, so we only
need to show that »

D

1F1
dP �

»
D

Ep1F1
| F3q dP (:)

for all D P σpF2,F3q. To that end de�ne DF1
to be the collection of all sets in σpF2,F3q

satisfying p:q. If we can show that H � DF1
and that DF1

is a Dynkin class, we will be done
by Dynkin's lemma, since then σpF2,F3q � σpHq � DF1

� σpF2,F3q. To show that H � DF1
,

take some H P H, i.e. H � F2 X F3 for some F2 P F2 and F3 P F3 and note that»
H

1F1 dP �
»
F3

1F11F2 dP �
»
F3

Ep1F11F2 | F3q dP �
»
F3

Ep1F1 | F3qEp1F2 | F3q dP

�
»
F3

ErEp1F1 | F3q1F2 | F3sdP �
»
F3

Ep1F1 | F3q1F2 dP �
»
H

Ep1F1 | F3q dP,

by various properties of the conditional expectation.

To show that DF1
is a Dynkin class, we note �rst that by the tower property Ω P DF1

. To
show that DF1

is stable under set di�erence, we see that for D1, D2 P DF1
with D1 � D2, we

have »
D2zD1

1F1 dP �
»

1F11D2 � 1F11D1 dP �
»
D2

1F1 dP �
»
D1

1F1 dP

�
»
D2

Ep1F1
| F3q dP �

»
D1

Ep1F1
| F3q dP

�
»
p1D2

� 1D1
qEp1F1

| F3q dP �
»
D2zD1

Ep1F1
| F3q dP,

by using that 1D2zD1
� 1D2 � 1D1 and the fact that both D1 and D2 are in DF2 . Finally

taking an increasing sequence pDnqnPN in DF1 , we have»
YnPNDn

1F1
dP �

»
1YnPNDn1F1

dP �
»

lim
nÑ8 1Dn1F1

dP � lim
nÑ8

»
Dn

1F1
dP

� lim
nÑ8

»
Dn

Ep1F1
| F3q dP �

»
YnPNDn

Ep1F1
| F3q dP,

by dominated convergence.

Theorem A.3.2 (Alternative characterization of conditional independence). Let pΩ,F, P q
be a probability space and let F1, F2 and F3 be sub-σ-algebras of F. F1 KK F2 | F3 if and only
if

pF1,F3q KK pF2,F3q | F3.
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Proof.

We will show this using the properties of conditional independence derived in Theorem 2.1.9.

It is straightforward by applying decomposition and symmetry that pF1,F3q KK pF2,F3q | F3 ùñ
F1 KK F2 | F3 .

To show the converse, note �rst that we have F1 KK F3 | pF2,F3q trivially since for F1 P F1

and F3 P F3

Ep1F1
1F3

| F2,F3q � 1F3
Ep1F1

| F2,F3q � Ep1F3
| F2,F3qEp1F1

| F2,F3q.

Thus since both F1 KK F2 | F3 and F1 KK F3 | pF2,F3q, we can apply contraction to get
F1 KK pF2,F3q | F3. Using symmetry and noting that pF2,F3q KK F3 | pF1,F3q by similar
arguments as earlier, we can again use contraction to get the desired result.
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