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Abstract

In this thesis we investigate conditional independence testing in Hilbert spaces with a
particular focus on infinite-dimensional and separable spaces. We review Shah & Peters’
construction of the Generalised Covariance Measure (GCM) by providing extra details
on the proof of pointwise asymptotic level and of uniform asymptotic level. We also
show that the GCM has pointwise asymptotic level when testing X 1 Y | Z for X and
Y univariate real-valued random variables and Z a functional random variable when the
relationship between X and Z and Y and Z can be explained using a scalar-on-function
linear regression model. We then proceed to generalise the GCM to separable Hilbert
spaces (possibly of infinite dimension), thus constructing the Generalised Hilbert Space
Covariance Measure (GHSCM) and prove that the GHSCM has pointwise asymptotic
level. We show that the GHSCM has pointwise asymptotic level when testing X 1 Y | Z
for X,Y and Z functional random variables when the relationship between X and Z
and Y and Z can be explained using a function-on-function linear regression model.
Finally we verify the results in a simulation study where we show that there exists cases
where the GHSCM is better at detecting conditional independence than the GCM.
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Introduction

1.1 MOTIVATION AND OVERVIEW

In this thesis we consider the problem of conditional independence testing for random vari-
ables with values in a Hilbert space. The primary interest is in the separable and infinite-
dimensional case but the theory will also apply for finite-dimensional Hilbert spaces. This
problem is not merely of theoretical interest but recent interest in the functional data analysis
paradigm has made the study of infinite-dimensional random variables all the more relevant.
In this framework, instead of observing n i.i.d. samples of some real-valued random vari-
ables, we observe n curves, that are generated in some way from discrete data (typically
through some form of smoothing). These curves can be viewed as elements of L?[0,1] or
(0, 1] depending on the context and as thus techniques for working with random variables

in infinite-dimensional spaces are needed.

The interest in developing conditional independence tests has also increased in the last few
decades for a variety of reasons. Conditional independence relations are the fundamental
components of graphical models, that have become applied increasingly often in the realm of
computational statistics [15]. In the field of causal inference too, the language of conditional
independence is often found and applied in many foundational algorithms such as the PC
algorithm and also in more modern methods such as invariant prediction. [19]. One could
hope that a conditional independence test for random variables in an infinite-dimensional

Hilbert space would allow for new developments in causal inference for functional data.

1.2 OUTLINE

The starting point for this thesis is a test of conditional independence for univariate real-
valued random variables; the Generalised Covariance Measure (GCM) as constructed by
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1.3 CONTRIBUTIONS

Shah & Peters in [25]. We will repeat the development of this test in Chapter 2 and also
introduce some preliminaries from probability theory and test theory. We will also provide
more details on the uniform results given in the original article. The chapter ends with
an explicit conditional independence test when X and Y are univariate real-valued random
variables and Z is a functional variable in L2[0,1] and where the relationship between X
and Z and Y and Z is assumed to be linear. In Chapter 3 we describe the various properties
of Hilbert spaces including linear functionals and operators on and between Hilbert spaces.
Furthermore we develop a theory of integration for separable Hilbert spaces. In Chapter 4
we develop a framework for probability theory on separable Hilbert spaces including how to
define a random variable on such a space and how to calculate the mean and covariance of such
a random variable. We also touch upon how to define conditional expectations on Hilbert
spaces and give a brief idea of how to define linear models on Hilbert spaces. In Chapter 5
we generalize the GCM to the Hilbertian case and prove that test has pointwise asymptotic
level. We show that we can use the GHSCM to construct a conditional independence test
with pointwise asymptotic level when X, Y and Z are functional random variables and the
relationship between X and Z and Y and Z is linear. Finally a small simulation study is
conducted where the GCM is compared to the GHSCM.

1.3 CONTRIBUTIONS
Below is a list of the most significant contributions to the literature:

e Providing further analysis on the proof of uniform asymptotic level for the GCM.

e A novel application of the GCM to the case of testing X 1 Y | Z when X and Y are

univariate real-valued and Z is functional.

A self-contained introduction to Bochner integration and random variables on Hilbert

spaces.

An extension of the GCM to infinite-dimensional Hilbert spaces and a proof that the

extensions holds pointwise asymptotic level.

A novel construction of a test of X L Y | Z when X, Y and Z are functional.




Preliminaries, test theory and the Generalised Covariance Measure

In this chapter we give a self-contained description of the Generalised Covariance Measure
for univariate real-valued random variables as originally constructed by Shah & Peters [25].

2.1 PROBABILISTIC PRELIMINARIES

We begin by first restating some preliminary results, focusing on the definitions of indepen-
dence and conditional independence. o-algebras turn out to be a convenient language to
express these notions in great generality. The appendix contains a summary of measure-
theoretic probability for the uninitiated. Most of the theory and development follows [9] and
[27].

In the following definitions we will concentrate on independence and conditional independence
of two o-algebras or two random variables for brevity but the notions could be expanded to

also include countable or uncountable families of o-algebras or random variables.

Definition 2.1.1 (Independence of o-algebras). Let (2, F, P) be a probability space and let
F; and Fy be sub-o-algebras of F. If

P(Fy n Fy) = P(F1)P(F2), VF el el
we say that Fy is independent of Fo and write F; I Fo.

In practice we will always work with random variables but independence of random variables
is defined through independence of o-algebras as we shall see. Recall that for a random
variable X defined on the probability space (2, F, P) with values in the measurable space
X,E), we define o(X) to be the smallest sub-o-algebra of F, that makes X F —E-measurable,
i.e. for all E € E we have X }(E) € o(X). We can write this set explicitly as o(X) =
{X~1(E) | E € E} or in more probabilistic language we can say that o(X) contains all sets
of the form (X € E) for E € E.




2.1 PROBABILISTIC PRELIMINARIES

Definition 2.1.2 (Independence of random variables). Let X and Y be random variables
defined on the same probability space (2, F, P) with values in the measurable spaces (X, E)
and (Y, G) respectively. We say that the random variables X and Y are independent if the
o-algebras o(X) and o(Y") are independent and we write X 1 Y.

Remark 2.1.3 (Equivalence of independence definitions). Note that independence of the
o-algebras generated by two random variables X and Y with values in (X,E) and (), G)

respectively can be written explicitly as
P(XeE YeG)=P(XeE)P(Ye@G), VEEE GeG,

which is the elementary definition of independence of random variables.

The two definitions above are compatible in the sense that given two independent random
variables X and Y by definition the o-algebras generated by the variables are independent.
If instead we are given two independent o-algebras F; and Fs and construct two random
variables X and Y into two possibly different measurable spaces such that X is [F{-measurable
and Y is Fy-measurable, then it is straightforward to see that X 1 Y.

The intuition for independence of random variables is that independent random variables do
not affect each other. If X 1 Y then knowing something about X does not tell me anything
about Y. We will not go over every property of independent random variable here but we

will note following essential characterization that we are going to use later.

Theorem 2.1.4 (Characterization of independence). Let (Q2,F, P) be a probability space
and X and Y be random variables into the measurable spaces (X, E) and (), G) respectively.
Then for all f: X - R, g: ) — R Borel measurable and bounded functions we have

if and only if X LY.

Proof.

It is easy to see that if X and Y are independent and f and g are measurable then f(X)
and ¢(Y') are independent. By the boundedness of f and g the integrals must exists. The
integrals then split by an application of Fubini’s theorem, since independence implies that
the joint distribution of the variables is the product measure of the marginals.

For the converse we can note that indicator functions on all Borel sets are bounded and
measurable and get the result immediately by noting that for any Borel set P(X € F) =
E(1g) (and similarly for Y) so

P(XeE,YeD)=E(1g(X)1p(Y)) = E(1g(X))E(1p(Y)) = P(X € E)P(Y € D)
as desired. ]
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The characterization in Theorem shows the intimate connections between integrals

(expectations) and independence.

In practice when given two real-valued random variables, we could be interested in knowing
whether the variables are independent or not. One way to rule out independence is by looking

at the covariance of the two variables as the following theorem suggests.

Theorem 2.1.5 (Covariance of independent variables). Let (£, F, P) be a probability space
and X and Y be real-valued random variables. Assume that E|X|? < o and E|Y|? < o0. If
X 1Y then Cov(X,Y) = 0.

Proof.
The moment assumptions ensure that the integrals in the definition of the covariance exist
and then the theorem follows from an argument similar to the one given in Theorem[2.1.4 [J

The GCM will rely on a conditional variant of the above result, so let us now develop this
theory. Conditional independence is a generalization of independence that is expressed in
the language of conditional expectations as defined in the appendix.

Conditional expectations allow us to define conditional probabilities by setting P(F | D) :=
E(1p | D) for any sub-o-algebra D of F and any F' € F. This is analogous to the usual result
that P(F) = E(1r). We can now define conditional independence.

Definition 2.1.6 (Conditional independence of o-algebras). Let (Q,F, P) be a probability
space and let 1, Fs and F3 be sub-o-algebras of F. If

P(FlﬁFQ |F3)=P(F1 |F3)P(F2 |IF3)7 VFlelFl,FQE]FQ,

holds almost surely, we say that Fy is conditionally independent of Fo given Fs and write
Fy L Fy | Fs.
If Fy is a fourth sub-c-algebra of F, we write F; L Fy | F3,F4 as short-hand for F; L
FQ | U(F3,F4).

The definition above looks very similar to the definition of independence (and does in fact
contain it by setting F3 = {Q, &}) but there is also an equivalent definition that often

becomes helpful.

Theorem 2.1.7 (Equivalent definition of conditional independence). Let (Q2,F, P) be a
probability space and let Fq, Fy and F5 be sub-c-algebras of F. Fy 1 Fy | F5 if and only if

P(Fy | Fy,F3) = P(Fy | F3),

for all Fi eTFy.
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Proof.
See the appendix Theorem O

We can also consider conditional independence of random variables.

Definition 2.1.8 (Conditional independence of random variables). Let X and Y be random
variables defined on the same probability space (2, F, P) with values in the measurable spaces
(X,E) and (), G) respectively. Let further D be a sub-o-algebra of F. We say that X is
conditionally independent of Y given D if 0(X) L o(Y) | D and write X L Y | D.

If Z is a third random variable defined on the same probability space with values some
measurable space, we define X LY | Z tomean X LY | 0(Z).

If W is a fourth random variable defined on the same probability space with values in some

measurable space, we define X 1Y | Z,WW tomean X LY | o(Z,W).

The interpretation of conditional independence is slightly more subtle than regular indepen-
dence. If X 1 Y | Z, then knowing the outcome of X tells me nothing about the outcome
of Y if we also know the outcome of Z. This intuition can be seen clearly in the equivalent

definition of conditional independence given earlier.

To get an idea of how conditional independence of several variables interacts, we will derive
some simple properties of conditional independence.

Theorem 2.1.9 (Fundamental properties of conditional independence). Let (2, F, P) be a
probability space and let Fy, Fy, F3 and F4 be sub-o-algebras of F. Then

1. Fl A1 FQ | ]F3 — Fg A1 Fl | IF3 (symmetry)

2. Fl A1 (FQ,Fg) | F4 — ]Fl A1 FQ | F4 A ]Fl A1 Fg | F4 (deCOHlpOSitiOIl)

3. Fl AL (FQ,Fg) | F4 — Fl A1 FQ | (]F3,IF4) (Weak union)

4. F1 L Fy | Fs AFy LFy | (Fo,F3) = F1 L (Fq,Fy) | F3 (contraction)
Proof.

Symmetry is obvious from the definition of conditional independence and decomposition is
also straightforward since both Fy and F5 are subsets of o(Fq, F3).

Weak union holds since taking F} € Fi, we get
E(lp | F2,Fs,Fy) = E(1p | Fa),
by assumption and since also by decomposition F; L F5 | Fy, we can continue and write

E(lp, |Fy) = E(1p, | F3,Fy),

-6 —
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thus proving conditional independence by the equivalent definition given earlier. Finally for

contraction, we get,
E(lp | F2,F3,Fy) = E(1p, | F2,F3) = E(1p | Fs),

by Fy L F, | (F,F3) and F; L Fy | F5 respectively, again proving conditional independence
by the equivalent definition. O

It is worthwhile to note that conditional independence is preserved under measurable functi-

ons.

Theorem 2.1.10 (Conditional independence of functions of random variables). Let X and
Y be random variables defined on the same probability space (2,F, P) with values in the
measurable spaces (X, E) and (), G) respectively. Let further D be a sub-c-algebra of F and
f:X - X and g: Y — ) be measurable functions into the measurable spaces ()E',fE) and
(V,G) respectively. If X LY | D, then f(X) L g(Y) | D.

Proof.

Note that any F € o(f(X)) is of the form (f(X) € E) for some E € E, which is equivalent
to (X € f~1(E)). Measurability of f implies that f~'(E) € E, so the set (X € f~I(E))
is in o(X). A similar argument can be performed on sets in o(g(Y)). This proves the
result since we know that sets in o(X) and o(Y) satisfy the criterion required for conditional

independence. O

Just as it was done for independence, we can characterize conditional independence.

Theorem 2.1.11 (Characterization of conditional independence). Let X and Y be random
variables defined on the same probability space (2, F, P) with values in the measurable spaces
(X,E) and (), G) respectively. Let further D be a sub-o-algebra of F. Then for all f : X — R,
g : Y — R Borel measurable and bounded functions we have

E(f(X)g(Y) [ D) = E(f(X) [ D)E(9(Y) | D)
ifand only if X L Y | D.

Proof.
See |5] Proposition 2.3.28. O

We can use the characterization in Theorem [2.1.17] to show that the conditional expecta-
tion of a product of integrable real-valued variables factorizes when they are conditionally
independent.
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Theorem 2.1.12 (Conditional expectation of conditionally independent variables factori-
zes). Let X and Y be real-valued random variables defined on the same probability space
(Q,F, P). Let further D be a sub-c-algebra of F. Assume that X, Y and XY are integrable.
Then if X LY | D,

E(XY |D)=E(X | D)E(Y | D).

Proof.
Note that we can define a sequence of bounded and measurable functions f,,(z) = 1(j3<n)()
such that f, converges to the identity. It is straightforward to see that f,,(zy) = fn(2) fn(y)-
Then
E(XY |D)=E ( lim f,(XY) | ]D)) = lim E(f,(XY) | D),
n—x0 n—x
by the conditional dominated convergence theorem since f,,(XY') is bounded by XY which

is integrable by assumption. Continuing we get by conditional independence and the boun-
dedness of f,

Tim E(f,(XY) | D) = lim E(fu(X)fa(Y) | D) = lim E(fu(X) | D)E(fa(Y) | D).

By again applying the conditional dominated convergence theorem (see Theorem [A.1.26)
since f,(X) is bounded by integrable X and similarly for Y, we get the desired result. [

In practice when we are given three real-valued random variables X, Y and Z, we would like
to find a way to determine whether X L Y | Z. To that end we can define a conditional

variant of covariance.

Definition 2.1.13 (Conditional covariance). Let X and Y be real-valued random variables
defined on a probability space (2,F, P) and let D be a sub-c-algebra of F. Assume that
E|X|?> <o and E|Y|? < c0. We define the conditional covariance of X andY given D as

Cov(X,Y | D) = E([X — E(X | D)][Y — E(Y | D)] | D).

Applying simple laws for conditional expectations reveals that

Cov(X,Y | D) = E(XY | D) — E(X | D)E(Y | D).

Note that the conditional covariance is a random variable and not simply a real number.
Just as the covariance of independent random variables is zero the conditional covariance of
conditionally independent random variables is also zero.

Theorem 2.1.14 (Conditional covariance of conditionally independent variables). Let X
and Y be real-valued random variables defined on a probability space (2, F, P) and let D be
a sub-o-algebra of F. Assume that E|X|?> < o0 and E|Y|? < 00. Then if X 1 Y | D we have
Cov(X,Y | D) =0.
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Proof.
Follows immediately from [2.1.12 O

The following theorem forms the basis of the GCM.

Theorem 2.1.15 (Product of residuals of conditionally independent variables is zero). Let
X and Y be real-valued random variables defined on a probability space (2, F, P) and let D
be a sub-o-algebra of F. Assume that F|X|* < o0 and E|Y]? < 0.

Define the residuals e = X — E(X | D) and £ =Y — E(Y | D).
Then if X LY | D we have E(&e) = 0.

Proof.
Note that by the tower property it is sufficient to show that E(¢£ | D) = 0. This is know
immediate from the definition of the conditional cross-covariance and Theorem [2.1.14] since

E(e€ | D) = E([X — E(X | D)][Y ~ E(Y | D)] | D) = Cov(X.Y | D).

O

When given n i.i.d. observations of three random variables X, Y and Z, the GCM will be
based on estimating the conditional expectations of X given Z and Y given Z, forming the
residuals and testing whether the mean of the product of the residuals is zero. By Theorem
if that is not the case, X and Y are not conditionally independent given Z. We will
expand on this later.

We can in fact generalize Theorem 2.1.T5] to give yet another characterization of conditional

independence.

Theorem 2.1.16 (Daudin’s lemma). Let X, Y and Z be real-valued random variables
defined on a probability space (2, F, P). Then X L Y | Z if and only if

E(f(X,2)g(Y,2)) =0

for all f, g measurable and real-valued with E(f(X,Z) | Z) = E(g(Y,Z2) | Z) =0, E(f(X, Z)?) <
w and E(g(Y, Z2)?) < .

Proof.

A proof is given in [7], where the conditional independence statement X 1 Y | Z is defined as
E(f(X,2)9(Y,2) | Z)=E(f(X,2) | Z)E(9(Y,Z) | Z). Using the definitions of this thesis,
this would be (X, Z) L (Y, Z) | Z but we show in Theorem [A.3.2] that this is equivalent to
assuming X 1Y | Z. O
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Daudin’s lemma is a strengthening of Theorem [2.1.15] since € and £ are examples of square
integrable functions with conditional mean zero. Using Theorem to construct a test,
we would not be able to detect all cases of conditional dependence but Daudin’s lemma
states that if we performed the test on all possible transformations of the random varia-
bles, we would be able to detect all cases of conditional dependence. This is a theoretical

consideration, since of course such a test would not be possible in practice.

The standard modes of convergence of sequences of real-valued random variables are revised
in the appendix. We will also apply some uniform variants of convergence for families of

sequences of random variables.

Definition 2.1.17 (Uniform convergence of random variables). Let (2, F, P) be a probability
space and let © be some parameter space (think of © being a subset of R? or even a set of
probability measures). Let further (X, ¢)nen9eo be a family of real-valued random variables
defined on (Q,F, P). Let (Xp)geo be another family of real-valued random variables. Then

1. If for every € > 0, we have

lim sup P(| X9 — Xo| =€) =0,

n=% ge@

P
we say that X, g converges to Xg in probability uniformly in 6 and write X,, 9 3o Xo.

2. If for every bounded, continuous, real-valued function f: R — R, we have

lim sup |E(f(Xn)) — E(f(Xs))| =0,

n—o0 0O
. . . . . - . D
we say that X,, g converges to Xg in distribution uniformly in 6 and write X,, 9 3o Xo.

We will sometimes omit the subscripted © from the notation when it is clear from the context.
We will also abuse notation slightly and write X,, 9 3 X where X is a single random variable,
by which we mean that X, o converges uniformly to the family Xy = X for all 6 € ©.

Each family (X, g)nen,0co is often thought of as a sequence for each 6, i.e. for each 6, € O,
we would consider (X, g, )neny When usually thinking about convergence of random variables.
The uniform definitions allow us to consider what happens to convergence across multiple

possible distributions of a sequence simultaneously.

It is quite easy to see that convergence in distribution uniformly in 6 implies convergence
in distribution for every 6 and similarly for convergence in probability. These forms of
convergence turn out to be a natural language to phrase various requirements on tests to
ensure that they are uniformly well-behaved across all possible distributions.

— 10 —
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Uniform convergence is preserved under continuous transformations as seen in the following
theorem.

Theorem 2.1.18 (Uniform continuous mapping theorem). Let (2,F, P) be a probability
space, let © be some parameter space and let (X, g)nen gco be a family of real-valued random
variables defined on (2, F, P). Let (Xy)pco be another family of real-valued variables on the

D
same space and assume that X,, 9 3¢ Xg. Let h : R — R be a continuous mapping. Then
D
h(Xn’g) =) h(Xg).

Proof.
Note that if f is a continuous, bounded and real-valued function, then so is f o h, thus the
result follows immediately. O

Many of the usual properties of convergence in distribution boil down to the question of

whether a given sequence or family is tight.

Definition 2.1.19 (Tightuness of a family of random variables). Let (2, F, P) be a probability
space and let X,e4 be a family of real-valued random variables on (2, F, P) indexed by the
set A. We say that X,ca is tight if for all € > 0, there exists some M > 0 so that

sup P(|X,| > M) <e.
acA

Both a single measure and any sequence of random variables converging in distribution are
tight, which is applied when proving theorems such as Slutsky’s theorem. Neither a single
family (Xg)peo nor a family (X, g)nengeo converging uniformly in distribution are a priori
tight. Finding assumptions guaranteeing tightness is non-trivial but assuming that that for
each n € N the family (X, g)pco and (Xp)geo are tight is sufficient to prove a version of
Slutsky’s theorem.

Lemma 2.1.20 (Tightness of uniformly convergent sequence). Let (2, F, P) be a probability
space, let © be some parameter space and let (X, g9)nen co be a family of real-valued random
variables defined on (2, F, P). Let (Xy)pco be another family of real-valued variables on the
same space and assume that for each n € N the family (X, ¢)gco and (Xp)geo are tight.

Then if for every bounded, uniformly continuous, real-valued function f : R — R, we have

lim sup |E(f(Xn0)) — E(f(Xs))| =0,

n—>o 0cO

the family (Xn,G)nEN,GEG is tight.




2.1 PROBABILISTIC PRELIMINARIES

Proof.
See [27] Lemma 3.1.6 for a proof in the non-uniform case and note that the extra assumptions
of tightness of (X, g)sco and (Xp)geo allow for the proof to also hold in the uniform case. [

This lets us conclude that it is sufficient to consider uniformly continuous test functions when

proving uniform convergence in distribution.

Theorem 2.1.21 (Uniform convergence in distribution and uniform continuity). Let (Q,F, P)
be a probability space, let © be some parameter space and let (X, g)nen,oco be a family of
real-valued random variables defined on (Q2,F, P). Let (Xp)geo be another family of real-
valued variables on the same space and assume that for each n € N the family (X, 9)seo and
(Xo)oco are tight. Then X, g %@ Xy if and only if for every bounded, uniformly continuous,
real-valued function f : R — R, we have

lim sup |E(f(Xn0)) — E(f(X))] = 0.

n—>aL 0cO

Proof.
See [27] Theorem 3.1.7 for a proof in the non-uniform case and the proof then follows in the
uniform case applying Lemma, [2.1.20] instead of the non-uniform version in the proof. [

We will apply Theorem [2.1.21] to prove Slutsky’s lemma.

Theorem 2.1.22 (Slutsky’s lemma for uniform convergence). Let (2, F, P) be a probability
space, let © be some parameter space and let (X, 9)nen oco and (Y, g)nen,geo be two families
of real-valued random variables defined on (Q,F, P). Let (Xp)gco be another family of real-

valued variables on the same space and assume that for each n € N the family (X, 9)geo and

D P
(Xo)geo are tight. Assume further that X, 9 3 Xy and Y,, 9 3 0. Then
D
Xno+ Y03 Xy
Proof.
By Theorem [2.1.21] it suffices to prove

sup |E(f(Xno+Yne)) — E(f(X9))| =0

as n — oo for all bounded, uniformly continuous real-valued functions f.

Note that
sup |E(f(Xno + Yno)) — E(f(Xo))|
< sup |E(f(Xnp + Yno)) — E(f(Xn0))| + sup |E(f(Xn,0)) — E(f(Xo))]
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and the second term goes to 0 by assumption, so it suffices to show that the first term goes

to 0. By the triangle inequality for integrals and linearity of the integral we get

sup |E(f(Xn,0 +Yng) — E(f(Xne))| < 2ugE|f(Xn,9 +Yo0) = [(Xno)l

For any € > 0, we can find 6 > 0 from the uniform continuity of f so that |f(x+y)—f(x)| <€
for all |y| < 0. This lets us partition the integral into a region where |Y;, 9| < 0 (and thus
where |f(Xpn,0+Yn0) — f(Xno)| <€) and a region where |Y;, g| > J. We get by also applying
the triangle inequality to the second integral that

EUGPEV(Xn,e + Ya) — f(Xnpg)| <e+ zugE[l(\yMN)(lf(Xn,e + Yo o)l + | f(Xnol)]
€ €

< e+ sup 2| fllo P([Ya,o| > 9),
=)

where ||f|lc = sup,eg f(x), which is finite by assumption, so the second term can be made
arbitrarily small by choosing a large enough n. Since € was arbitrary, we are done. O

Unfortunately we are not able to continue this development and generalize to the usual
Slutsky’s theorem under the assumptions given here. Bengs and Holzmann use stronger

assumptions in [1] to get the following result.

Theorem 2.1.23 (Slutsky’s theorem for uniform convergence). Let (Q2,F, P) be a probability
space, let © be some parameter space and let (X, 9)nen,oco and (Y, g)nen,geo be two families
of real-valued random variables defined on (2, F, P). Let (Xp)geo be another family of real-
valued variables on the same space, let (ys)geo be a family of real numbers and assume that

D P
Xno 3 Xgand Yy, 0 3 ys.

Assume further that the family of measures (Xy(P))geo is uniformly absolutely continuous
with respect to some continuous probability measure @ on (R,B), i.e. for any € > 0, there
exists 0 > 0, such that for any B € B with Q(B) < § we have

sup P(Xgp e B) <e.

0O
Then
D
Xn,@ + Yn,ﬁ = Xt9 + Yo
and
D
Xn,0Yn0 3 Xoys.
Proof.
See [1] Theorem 6.3. O
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We will solely apply this full version of Slutsky’s theorem in the case where Xy is a family of
normal distributions with mean zero and bounded variances and we now prove that such a

family is in fact uniformly absolutely continuous with respect to a continuous measure on R.

Theorem 2.1.24 (Mean zero normal distributions are uniformly absolutely continuous).
Let (2,F, P) be a probability space, let © be some parameter space and let (Xy)geo be a
family of real-valued random variables. Let o(6) be a function such that o(6) is bounded
and bounded away from zero for all # and assume that Xy ~ N(0,0(0)?). Then we assume
that (Xp)geo is uniformly absolutely continuous with respect to some continuous probability
measure on (R, B).

Proof.
Let 03, := supgee 02(0) and o7 similarly. We intend to show that the family (Ps)sco =

(Xo(P))oeo is uniformly absolutely continuous with respect to the measure Q = N(0,02,,)-
To that end let € > 0 be given and choose first M > 0 from the tightness of @ so that

QU-M, M]%) <

| ™

Note first that Py([—M, M]°) < Q([-M, M]°) for any . We can see this by arguing that
Py([-M, M]) = Q([—M, M]), which can be seen by performing integration by substitution

2
Isup 2

—u

—z -2 1 —
e22® dg = J L % Ee du s Q([-M, M),

M
1
[~ M, M]) = f L "
-M \/271'0'(9)2 765‘(‘;’)M ‘/27r0—52up

2

Py(

2
where the final equality is due to :5&‘5) > 1. Note also that if Q(A) < ¢ for some § > 0 then
m(An[-M,M]) < W where m denotes the Lebesgue measure and ¢ is the density of

@. This has to holds since if not then

Q(A) = QAN [-M, M]) = L ot pq(r)dz = po(M)m(A n [-M, M]) = 6

since g (M) is the smallest value that ¢ attains over [—M, M]. Let C' = supgee ¢o(0)

e ;M)_

where @y is the density of Py with respect to the Lebesgue measure and set 6 = min (5, g

Then for any 6 € © and A € B with Q(A4) < §, we have

Py(A) = Py(An [-M,M]°) + Py(An [-M, M]) < Q([—M, M]¢) + Cm(A n [-M, M])
)

g
<-4+ ——=C<c¢
2 pq(M)

finishing the proof.
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We have a version of the Law of Large numbers in the context of uniform convergence.

Theorem 2.1.25 (Uniform Law of Large Numbers). Let (Q2,F, P) be a probability space,
let © be some parameter space and let (Xg)seo be a real-valued family of random variables
defined on (Q,F, P). Assume that there exists 7 > 0 so that supy.e F|Xg|'*" < o0 and let
wu(8) = E(Xp). Let (X, 0)nen9eo be a family of real-valued random variables such that for
each 6y € O the sequence (X, g, )nen is independent and with the same distribution as Xp,.
Then .

% Z Xio 59 p(6).

i=1

Proof.
Assume without loss of generality that u(f) = 0, since if the result holds, we can instead
consider X, o = X,, 9 — pu(6).

Let € > 0 be given and note that for every M > 0, we can write

1 n
sup P | |— Z Xigl =€
nia

0e©

1 n

~ > Xiod(x, ol<an)
n 1=1

<sup P
0cO

1 n
= Pl|= ) Xiolgx,
5) +21€18 (‘n; OL(X0/>M)

25).

For the first term, note that by 1 4+ n-order Markov’s inequality, the triangle inequality and
the i.i.d nature of X, g for each 6 yields

E(X} M 141
?6) < sup ( 0 (\XQISM)) < M

1 n
sup P [ |= > X; 01, .
P <‘n i,01(1X; 0|<M) P el n S neitn

0co i=1

For the second term, by the the arguments as above but using first order Markov’s inequality,
we get

S 6) < sup E(|X9|1(\X9|>M))'

1 n
Pl|=) Xiolgx,
sup (‘nz OL(1X5,01>M) oub -

0cO i=1

Using Holder’s inequality on the integral, we get

1+n
n o,

E(1 X6l 1(xy1>1) < E(1Xo|"™") P(|Xg| > M)

We can bound the probability by Markov’s inequality once again and get

E|X|

P(|Xo| > M) < =22,

— 15 —
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which implies that

sup E(| X" E(1Xo]) /1,

1
sup P <‘ Z Xi01(1x, 61> M) ) < eM+n)/n

ES) im1

We can thus choose M sufficiently large to ensure that the second term is small and then

choose n sufficiently large, so that the first term becomes small. O

We also have a central limit theorem.

Theorem 2.1.26 (Uniform Central Limit Theorem). Let (2, F, P) be a probability space,
let © be some parameter space and let (Xy)geo be a real-valued family of random variables
defined on (Q,F, P). Assume that there exists 77 > 0 so that sup,.e E|Xg|?*" < 00 and let
p(0) = E(Xy) and o%(0) = Var(X,). Assume further that infs o2(0) > 0. Let (X, 0)nenoco
be a family of real-valued random variables such that for each 6y € © the sequence (X, o,)nen
is independent and with the same distribution as Xg,. Then

(Xs0 — 1(0)) B N(0,0%(6)).

M:

T’L

1

Proof.
We can assume that p(6) = 0, since otherwise we consider the variables )N(n,.g = X, 0 — p(6).
Define

M:

Wn,@ = T ( 0 — /1'(9))

1

and Zy ~ N(0,02(0).

Note that to show uniform convergence in distribution, it is sufficient to show that for every

sequence (0, )nen in ©, we have

[E(f(Whn.o,)) — E(f(Zs,))| =0

as n — oo. This holds since if

sup |E(f(Wh.0)) — E(f(Zp))| + 0

0c©

as n — o0, there would exist € > 0 and sequences (0 )reny and (ng)ken so that

|E(f(Wh,.0.)) — E(f(Zs,))| = €

for all £ € N.

— 16 —
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Take any sequence (6,,)nen in © and define

forneNand 1 <k <nand

(Yo k)1<k<n satisfies the conditions of Lyapounov’s CLT (see Theorem [A.1.20). The rows
are independent and centered and the variance of S;, is 1 by construction. The Lyapounov
condition is satisfied since

. n . 1 1& E|Xk 0 |2‘H7
lim E|Y,x|?™" = lim — Tk
n—o 1§1 | k| n—aw \/ﬁn n I;l 0'2+77(9k)

1 1

< i E|X 27 0
ngrclf \/ﬁn infge@ O'2+7](0) zg(g | 0| -

as n — o0.

The above shows that convergence holds for all sequence i.e. that

1 " Xiﬁ 2)
%;a(e) = N(0,1).

Applying Theorem [2.1.23] with Assumption [2.1.24) will give the desired result, which we can
do since the moment conditions given imply tightness by Markov’s inequality. O

The approach for uniform convergence results given here is not unique and other approaches
using different assumptions to account for tightness can be seen in 1] as mentioned ealier or
in [14].

In addition to the properties of uniform convergence derived above, when proving the asymp-
totic properties of the GCM, we will need the following lemmas.

Lemma 2.1.27. Let (2, F, P) be a probability space, let © be some parameter space and
let further (X, 9)nen 0eo be a family of real-valued random variables defined on (Q,F, P). If

P
Xn,0 33 0 and there exists C' > 0 such that | X, g| < C for all n € N and 0 € ©, then
sup E(| Xp,0]) = 0
0c©

as n — o0.
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Proof.
Let € > 0 be given. Note that

sup F(|X,, <sup F (| X,0]1 +sup F (| X,0|1

sup (| Xo.0[) < sup B (| Xn o[, 01<e/2)) + 500 B ([ XnolL(1x, o 2¢/2)

<S4 Osup P(| X g = £/2).
2 0cO

By assumption for any > 0, we can choose N € N so that for all n > N, we can make
supgee P(|Xn,0| = €/2) <n . Thus choosing N to parry 1 = 55, we get

sup E(| X,0]) <e.
6cO

Since ¢ was arbitrary, we get the desired result. O

Lemma 2.1.28. Let (2, F, P) be a probability space, let © be some parameter space and
let further (X, ¢)nen be a family of real-valued random variables defined on (2, F, P). Let

(X0)oco be another family of real-valued random variables and let (Fy, g)nen,9co be a family

P P
of sub-c-algebras of F. If E(| X, 9| | Fn9) 3o 0 then X, 9 3o 0.

Proof.
Let € > 0 be given and note that by Markovs inequality
FE(|X A
SupP(|Xn,0| = 5) < SUpP(|Xn’9| ANE = g) < sup w
0e® e® 0e® €

We will be done, if we can show that supycg E(]Xn 0| A €) — 0 as n — oo. Note that by
monotonicity of conditional expectations, for each 6 € © we have

[Xnol re<e= E(|Xnolrne|Fng) <E(e]|Frnp) =¢,

and
| Xnol A e < |Xnol = E(|Xnol Ac|Fro) < E(Xnp | Fnp)

Combining both of the above expressions, we get

E(|Xnol Ae|Frno) < E(|Xnolrne|Fnp) Ae.

This lets us write by the tower property and monotonicity of integrals

sup E(|Xp 0| A €) = sup E(E(|Xn| A€ | Frnp)) < sup E(E(|Xn | | Fnp) A €).
0c© 0e© 6eO

Now the conclusion follows from the assumptions and Lemma [2.1.27|since E(| X, 9| | Fr,9) A€
goes to 0 in probability uniformly in § € © and is bounded by «. O

— 18 —
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2.2 STATISTICAL MODELS AND TEST THEORY

In this section, we present the fundamentals of statistical models and test theory. We will
mainly follow the development in [8] and [13].

In statistics we observe the outcome of some random variable X with values in a set X,
which has unknown distribution X (P) (X (P) is the push-forward measure of P under X). A
statistical model consists of a set of possible distributions for X and we attempt to determine
which of these distributions are acceptable (or rather which are unacceptable) for the random

phenomenon that is being modelled.

Definition 2.2.1 (Statistical model). A statistical model consists of a sample space, X, a
o-algebra defined on X, E, and a set of probability measures on (X,E), P.

Remark 2.2.2 (Observations and sampling assumptions). Throughout this thesis we will
always work under the assumption of i.i.d. sampling. We will assume that we observe a
sequence (x;);en of observations from a sequence of independent and identically distributed
copies of X, (X;)ien. We let X (™ denote the joint distribution of the first n of these copies.

A simple example of a statistical model is X = R? for some d € N, E as the Borel o-algebra

on R? and P as the set of normal distributions on R? with unknown mean and covariance.

To draw inference i.e. deciding if there are some v € P that match observation more than
others, statisticians work with the concept of a hypothesis.

Definition 2.2.3 (Hypothesis). Let (X,E,P) be a statistical model. A hypothesis, Hy, is
a subset Py of the full family of probability measures, P. The alternative hypothesis, H,
to Hy is the complement P; = P\Py. A hypothesis is called simple if it consists of a single

measure and composite otherwise.

The interpretation of a hypothesis is that the true data-generating mechanism is in the set
Py- Most of classical statistics is built upon the idea of observing an outcome, choosing a
suitable model and constructing hypotheses within the model to predict and understand the
phenomenon. To formalize the process of accepting and rejecting hypotheses, statisticians
work with concept of a test.

Definition 2.2.4 (Test of hypothesis). Let (X, E, P) be a statistical model and Hy a hypot-
hesis. We define a test as a sequence of partitions of X" into an acceptance region A, and a
critical region AS. This partition is also expressed through the sequence of critical functions
Yy + X™ — {0,1} given by

0 ifzeA,

anll,' = .
) 1 ifze A
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A test is either (A, )nen or equivalently (¢, )nen.

We will refer to both A,, and 1), as tests, however we will primarily use the functional defi-
nition. Given a sample of size n from a statistical model and when considering a hypothesis,
we simply apply the n’th critical function to the observation and if 1, (z) = 0, we accept the
hypothesis and if 1, (z) = 1 we reject it.

The definition above is abstract and allows for poor tests (we could for instance reject or
accept everything and this would still be valid tests). We now define some properties of tests
that helps us determine whether they are useful in testing a hypothesis.

Definition 2.2.5 (Properties of tests). Let (¢, )nen be a sequence of tests of a hypothesis
with null set of probability measures Py. For a given level « € (0, 1), we say that

1. the sequence (¥, )nen has wvalid level if for every n

sup P, (v, =1) < «,

veEPy
2. the sequence (1, )nen has uniformly asymptotic level if

limsup sup P, (¢, =1) < a,

n—«L vePy
3. the sequence (¢, )nen has pointwise asymptotic level if

sup limsup P, (¥, = 1) < «,

vEPy Nn—%w

where P, is short-hand for the probability assuming that X(P) ~ v.

A test holding level is a way of ensuring, that we do not reject true hypotheses too often.
Some of these properties imply each other as the following theorem shows.

Proposition 2.2.6 (Relations between properties of tests). Let (X,E,P) be a statistical
model, let Hy be a hypothesis and let (¥, )nen be a sequence of tests for the hypothesis.

1. If the sequence (1, )nen has valid level, then it also has uniformly asymptotic level.

2. If the sequence (1, )nen has uniformly asymptotic level then it also has pointwise asymp-

totic level.

Proof.
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1. Trivial, since lim sup respects inequalities.

2. Let
my, = sup P, (¢, = 1).

vePo

Then clearly P, (¢, = 1) < m,, for every n and v. Thus since lim sup respects inequa-
lities
limsup P, (v, = 1) < limsupm,,,

n—oC n—>a0

and since the above inequality holds for every v, it also holds for the supremum i.e.

sup limsup P, (¢,, = 1) < limsup m,,,

vEPy n—o&L n—oC

and since the right-hand side is less than « by assumption, we are done.

O

The motivation for defining the level of a test is to ensure that if we have a sufficiently large
sample size, we can bound the probability that we reject H falsely. Note however that the
definition of pointwise asymptotic level yields that for any v € Py and any € > 0, we can find
N € N such that for all n > N, we have P,(1,, = 1) < a + ¢. In particular the choice of N
is dependent on v.

If we have uniformly asymptotic level, we get that for each £ > 0, there exists some N € N
such that the largest probability P, (1, = 1) is less than £ + «. In other words we can choose
a threshold € and then by working backwards, we can be sure that the actual level is within
the threshold for all v € Py simultaneously.

The following is an example of a test that does not have uniform asymptotic level.

Example 2.2.7 (Pointwise vs. uniform asymptotic level). This example is based on a similar
example in [17]. Consider the statistical model consisting of all distributions on R with finite
variance and the hypothesis that the distribution has mean zero. We consider the sequence

of tests given by

1 if iﬁ > Zl—a
wn(x) = 7 ,

0 otherwise

where Z is the empirical mean of z, & is the unbiased estimate of the standard deviation of
x and z1_, is the 1 — a quantile of the normal distribution. Note for any v € Py

P,(tpp =1) > P(Z > z1-4) = «,
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as n — o0 since the central limit theorem yields that XV, 7 asn — o0 where Z ~ N(0,1).

o

Since the convergence holds for every v it also holds for the supremum and thus

sup limsup P, (¢, = 1) = «,

vEPy nN—%L

proving that the sequence of tests has pointwise asymptotic level.

This test does not achieve uniform asymptotic level since for any n and any ¢ € (0,1), we
can find a distribution v € Py such that P, (¢, = 1) = ¢. To do this consider the distribution
that puts mass 1 — p on p and mass p on —(1 — p). Clearly this distribution has mean zero

and finite variance so it is in Py.

Note that if given a sample z of size n from this distribution, the probability that all x; = p
is (1 — p)™. If given such an observation, & = 0 and Z is positive so 1, (z) = 1. This implies
that P, (1, = 1) = (1 — p)" and choosing p = 1 — ¢'/" shows that P, (¢, = 1) > ¢ thus we

do not have uniform asymptotic level.

Having defined tests we can turn to the problem of constructing them. A common strategy
is to transform the sequence of observations in some way that has the same distribution for
all v € P. This leads to the definition of a test statistic.

Definition 2.2.8 (Test statistics). Let (X,E,P) be a statistical model and (g, )neny be a

sequence of functions where g, : X" — R. Let furthermore Py € P.

1. If for all n € N, g,,(X(™) has the same continuous distribution for all v € Py, we say
that (gn)nen 18 a test statistic with respect to Py.

2. If g, (X)) converges in distribution to the same continuous distribution for all v € Py,
we say that (g, )nen is an asymptotic test statistic with respect to Py.

3. If g,(X(™) converges in distribution uniformly over P to the same continuous dis-
tribution, we say that (g,)nen iS a wuniform asymptotic test statistic with respect to
Po.

Remark 2.2.9 (Continuity of test statistic distributions). In the definition above we have
assumed that the (limiting) distributions of the test statistics are continuous. There is no
a priori reason for this but it simplifies many of the upcoming proofs and considerations.
Continuity of the distributions allows us to always find sets of arbitrary probability and for
us not to discern between open and closed sets. To the best of the authors knowledge, most of
the following results still hold if this assumption was omitted (with modifications to account
for the possibility of point masses).
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Using test statistics as defined above we can create tests.

Definition 2.2.10 (Tests from test statistics). Let (X,E,P) be a statistical model and
(¥n)nen be a sequence of tests of a hypothesis Hy (with associated null-set of probability
measures Pp). Let further a € (0,1).

1. If (gn)nen is a test statistic with respect to Py, we can find a sequence of sets (B, )nen
such that P(g,(X) e B,,) = . From this we define a sequence of tests (¢, )nen by

i (n)
bn(z™) = 1 if g, (2\™) e B, .

0 otherwise

Any such sequence of tests is called a test constructed from the test statistic (gn)nen of

level c.

2. If (gn)nen is a (uniform) asymptotic test statistic with respect to Py, we can find a set
B such that P(V € B) = a where V is a random variable with the same distribution as
the limiting distribution of the asymptotic test statistic. We can then define a sequence
of tests (¢n)nen by

1 if go(z™)eB

lbn(x(")) -
0 otherwise

Any such sequence of tests is called a test constructed from the (uniform) asymptotic

test statistic (gn)nen of level a.

Most well-known statistical tests are constructed in one of the ways described above. This
way of constructing tests allows us to immediately deduce various properties of the resulting
tests.

Theorem 2.2.11 (Properties of tests from test statistics). Let (X,E,P) be a statistical
model, o € (0,1) and (¢,)nen be a sequence of tests of a hypothesis Hy (with associated
null-set of probability measures Py) of level a.

1. If (¢n)nen is constructed from a test statistic then (1, )nen has valid level.

2. If (¢n)nen is constructed from an asymptotic test statistic then (1, ),en has pointwise

asymptotic level.

3. If (¥n)nen is constructed from a uniform asymptotic test statistic then (1, )nen has
pointwise asymptotic level.
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Proof.

1. Let (gn)nen denote the test statistic. Note that for every v € Py and n e N
P,(tpp, =1) = P,(go(X") € B,) = «,
so it also holds for the sup over v € Py, proving that the test has valid level.

2. Let (gn)nen denote the asymptotic test statistic. Note that for every v € Py we have

limsup P, (1, = 1) = limsup P, (g,(X") € B)

n—ow n—x

Now the convergence g, (X", v) B V yields immediately that
P,(g( X" v)eB) > P(VeB)=a

as n — oo. Now by taking sup over v € Py the result follows since sup respects
inequalities.

3. Follows by arguments similar to the above by using the stronger assumption of uniform

convergence in distribution of the test statistic.
O

We will apply this way of constructing tests when we construct the GCM in the following
section.

2.3 UNIVARIATE GCM

In this section we define the Generalised Covariance Measure and prove its asymptotic pro-

perties under various assumptions.

To motivate the construction of the GCM, recall the statement of Theorem 2.1.T5} if X and
Y are real-valued random variables that are conditionally independent given a third random
variable Z, then the product of the residuals of X and Y when regressing on Z will have mean
zero. When given n observations of (X,Y, Z) we can perform the regression and calculate
empirical versions of these residuals. We can then test whether the mean of the product
of these residuals is zero to get a test of conditional independence. Let us be slightly more
formal and start to define the quantities needed to prove the upcoming statements about the
asymptotic level of the proposed test.
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Definition 2.3.1 (Generalised Covariance Measure). Let X and Y be univariate real-valued
random variables and let Z be a random variable with values in the measurable space (£, G).
Consider the statistical model for X, Y and Z that contains all joint distributions on R? x Z
ie.

P = {v probability measure on (R? x Z,B>® G)}.

Consider the hypothesis Hy : X 1 Y | Z with corresponding subset of probability measures
Py. For every v € P, we can write

- -
v

1v(2) €
ie. f,(2) = E,(X | Z = z) and similarly

Y=E,(Y | 2)+Y —E/Y | Z).
—_—

9v(2Z) &

Let (z,y,2)" € (R? x Z)™ be a sample of size n from the model and let f(”) and g denote
estimates of f and g based on the sample. For i € {1,...,n} define

R™ = (2 — F™ (2)) (i — 5™ (2))

and define -
=i’

2N\ 7
(tzmee - (ron )

For a. € (0,1) the sequence of tests (¢, )nen given by

Tn =

n 1 if T, > 21—
Un((,y,2)™) = ’

0 otherwise

is the Generalised Covariance Measure with level v, where z1_¢ is the 1 — § quantile of the

standard normal distribution.

Theorem 2.3.2 (GCM has asymptotic pointwise level). Continuing from Definition

we define for each v € P

uy,(2) = EV(E?/ | Z=2), w(z)= Eu(fz | Z = 2)

We further define the mean-squared prediction error and weighted mean-squared prediction

error for f

M, = D) = P and B, = D) — PV (00 (z)

i=1 i=1
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and

1 n o N 1 n o
Mg, == 3 (gu(z) = 9" () and M, = — 5 (g (2:) = 5 (20) un (22)
=1

i=1
for g.

Assume that for each v € Py, nM;, Mg, 50, M, 50, M2, 5 0and 0 < B, (262) < w0
then the GCM has pointwise asymptotic level.

Proof.

We show that for each v € Py, T), is an asymptotic test statistic, since Theorem [2:2.11] then
implies that the GCM has pointwise asymptotic level. We will show that T;, z N(0,1).
To that end let v € Py be given and fixed. We will at times lighten notation and omit v
subscripts from expectations, probabilities and other expressions. Define

2\ 2
_ 1 pm ERS I & o)
Tg—%;Ri and 1P = 5;( ) —<n;1Rj ) ,

so that T}, is the ratio of 7¥ and 7P. If we can show that 7.0 £ Var(€) and 7Y A
N (0, Var(g€)) by Slutsky’s theorem, we will be done. Note that we can decompose 7 in the
following way

N
Tn

Z ) e — T D) g0 () + & — 57 (20))

-

9

Cn

Note that by Theorem [2.1.15| the sequence (£;&;)ien has mean zero, since X 1L Y | Z for
v € Py, and by assumption it has finite variance (equal to the second moment of the sequence)
so the CLT gives that U, 2 N(0, E(e%€?)). Cauchy-Schwarz inequality yields that

oal € = D) = F ) i Dz = \fntiazt B o,

since we have assumed that nMJ MJ £ 0. To show that b, 5 0, we note that if b2 5o
so does b,. By Lemma [2.1.28if we can show that E(b2 | (X;)1<i<n, (Zi)1<i<n) £ 0 we will
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thus have shown that b, £o. Letting X (™ = (X;)1<i<n and similarly Z™) note that
1 n n ~
B} | X" =, Z Z (z1) = F™(20))(f(z5) = F"(z))E(&E, | XM, 20,

by the fact that the terms involving f and f are measurable when knowing X and Z(

Since &;§; only depends on Z; and Z; of the conditioning variables, we can drop the re-
maining variables from the conditioning expression. For ¢ # j, by using that E(Y; | Z;) =
E(Y; | Z;, Z;) since Z; is independent of (Y3, Z;) and by pulling out what is known, we get

B | XM, Z2MW) = B(Y,Y; — E(Y; | Z,)Yi = Y;E(Y; | Z) + E(Y; | Z)E(Y; | Z) | Zi, Z;)

= B(Y.Y; | Z0,2;) - B(Y; | Zi, Z)E(Y: | Zi, 2;) = Cov(Y.,Y; | Zi, Z).

By Theorem [2.1.14] this is zero if Y; 1L Y} | Z;, Z;. By assumption we have (Y3, Z;) 1L (Y}, Z;)
so applying weak union and symmetry from Theorem yields the desired conditional

independence statement. This lets us write

(f(z:) = F"(z0))E(€2 | Z))

1
P
-

E(bi | X(ﬂ)’Zm)) =

S|
Ingk

?

0

Il
=

by assumption.

An analogous argument to the one above applies to ¢, thus ¢, £ 0 and Slutsky’s theorem
yields that 7. 3 N (0, Var(g€)). We now turn to 7,2 and note that

-t B ) (R )
Pn an

From the results above, we can easily conclude that g, £ 0 since

2
o= (s
n \/ﬁ n )
and 7Y converges in distribution to a normal distribution, while ﬁ converges to 0 in pro-
bability, so Slutsky’s theorem yields that their product converges in distribution to 0. Con-
vergence in distribution to a constant is equivalent to convergence in probability to the same
constant and squaring retains convergence by the continuous mapping theorem, proving that

qn£>0.
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We now intend to show that p, KR Var(e,£,). We decompose p,, into 9 terms as seen below

~,

P =5 2 () i = ) (gz0) + 6 — 5 ()

D[ () = F )2 + e +2(f(0) = F e

(9020 = G i) + €2 + 2Ag(z0) = G )6 |

= L3+ 3 (7(e) — T (0() - 5 ()
=1 N i=1 g |
1, 11,
F S ()~ O gz — 5 )it
i=1
) e
F M) = O+ Y (o) 5 ()
=1 i=1
N ve
23 () = PO ) (0(0) — 90 ) + 2 D) — TP (et
=1 =1
vi Vi

Ve VI
By the Law of Large Numbers, we have
L, 5 E(52€2)7

and as noted earlier ¢£ has mean zero, so this is also the variance of ¢£. Note that for positive
sequences a, and b,, we have Y} a;b; < >} a; >,b; (easily seen by noting that every term on

the LHS appears on the RHS), from which we can get
IL, < nMIMg 50

by assumption. By Cauchy-Schwarz inequality we get

D=

IH"“(iig?ﬁ) <i,i(f(zi)—f<”><zi>>2<g<zi>—a<”><zi>>2> — 4117 5o,

i=1




2.3 UNIVARIATE GCM

since we just showed that I,, is convergent and II,, goes to 0 in probability, their product
goes to 0 in probability and the continuous mapping theorem yields that the same is true
when taking square roots.

By Lemma [2.1.28 IVfL £ 0 since
_ 1 % ~
BOVY | X0, 20%) = & 3 (1) = PGP | X0, 207) = 31 5 0
n —

by assumption and similarly for IVJ. By the triangle inequality and Cauchy-Schwarz, we
have

Vil < ZIg(zz)—A(”)(zz)llf(zz)— M (z)llg(zi) — 3" (=) 1€l

1 & - IS

<2, [ 200G = FM (a0 =502 § Do) =500
i=1 i=1

= 2/I,1v? 5 0

by the results above and similarly for VY. Finally by using the triangle inequality and
Cauchy-Schwarz again, we have

|VIf Z |f %) (n) ZZ)||§Z||51||51|

<2, |2 2 () — ez, | - 3 <2
=1 i=1
=2y/IVIL, B0

by the results above and similarly for VIY.

This shows that p, Lt Var(e€) thus by the continuous mapping theorem b B Var(&€)

n

and by Slutsky’s theorem T, 2 N(0,1) as desired. O

Using the uniform convergence results given in the section on probabilistic preliminaries, we

can also argue for the uniform asymptotic level of the GCM under stronger assumptions.

Theorem 2.3.3 (GCM has uniform asymptotic level). Consider the same setup as in The-
- - P - P

orem [2.3.2[ Let Py € Py. Assume that for each v € Py, anangn 35, 0, len Sp, 0,

-, P

Mg, 35, 0,0 <inf, 5 E,(2¢7) and sup,.p E,(e7€7") < oo for some 7 > 0, then the

GCM has uniform asymptotic level wrt. Py.
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Proof.

We can repeat the arguments in Theorem with the stronger assumptions, applying the
uniform versions of the continuous mapping theorem, Slutsky’s theorem, the law of large
numbers and the central limit thoerem (Theorem Theorem Theorem
and Theorem respectively). We note that we do rely on the unproven Assumption
2.1.24! O

We have now proven that the test holds asymptotic level under checkable assumptions. One
should however note that there are examples of X and Y not being conditionally independent
given Z but where the mean of the product of the residuals is still zero (one such example
is where X and Y are independent Rademacher and Z = XY). For such distributions the
GCM would always accept the null hypothesis of conditional independence despite this being
false.

Although X and Y are assumed to be univariate in the theorem above, it is possible to
generalize the GCM to the multivariate setting in several ways. A straightforward genera-
lization would be to simply proceed as above but instead letting R; be the outer product
of the residuals. One could then construct a test statistic that was asymptotically standard
normal of dimension equal to the product of the dimensions of X and Y under the null. The
norm of such a test statistic is chi-squared with degrees of freedom equal to the dimension
of the normal distribution. In the original article by Shah & Peters they propose instead
considering each combination of components of X and Y, calculating the one-dimensional
test statistic and aggregating by taking the maximum. Both strategies lead to valid tests
and in the original article it is argued that the maximum-based test has a smaller bias.

One worthwhile thing to notice is the immediate lack of assumptions on Z. In theory Z
could take values in any measurable space. Of course we still need to be able to regress X
and Y on Z in practice and have results about the mean squared error of such a process for
the result to hold. With Z being uni- or multivariate and real-valued the applications are
obvious but one could also consider Z to be a functional random variable. This would mean
letting Z take values in a Hilbert or Banach space of functions. To illustrate this point we
will include the following theorem from [26] about the convergence rate of a functional linear
model. The article by Shin & Lee discusses a model where predictors are both functional
and multivariate but we will simplify and only give the result for the functional linear model.
The functional definitions mentioned in the theorem are omitted for brevity but reading the
following two chapters should provide most of the required background to understand the

theorem.

Theorem 2.3.4 (Mean squared prediction error in functional linear model). Let Z be a
functional random variable defined on [0,1], i.e. a random variable in L?([0, 1]) with finite
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second moment and covariance operator % and let £ be a real-valued random variable
independent from Z with E(¢) = 0 and E(e?) = o2. Let v be a function in L?([0,1]) and
define the random variable Y by

1

Y=<Z,7>+5:=J V() Z() dt + .
0

This is the functional linear model with scalar response.

Let (Y;, Z;)ien be an ii.d. sequence of realizations generated by the model. We can then
estimate v consistently using a principal components method as described in [26] yielding an
estimate 7. Assume that Z has finite fourth moment and let ();, ¢;) jen denote the eigenvalue

and -vector pairs of the covariance operator .#". Assume that

1. There exists C; > 0 so that for all j > 1, we have E({(X, ¢;)*) < C1)3.

2. There exists Cy > 0 and a > 1 so that for all j > 1, we have C~1j=* < \; < Cj7% and
Aj = Ajp = Cjeh

3. There exists C3 > 0 and b > 1/2 such that for all j > 1, we have |(v, ¢, < Cj~".

Then for a new independent observation Z , we have
VAE (G, 2) =1 2 | (Y Zidiisa) 55 0.

Under some technical smoothness conditions, we do in fact achieve a mean square prediction
error that is sufficient for the requirements given in Theorem While the linear relati-
onship required is a rather strong condition more scalar-on-function regression methods are
actively being developed (see [20] for an overview of methods.)

If we consider a situation where the functional linear model is applicable, we now have a
concrete example of a conditional independence test with pointwise asymptotic level. To the
best of the authors knowledge, this is a novel result and the first example of a conditional
independence test involving functional data.

Theorem 2.3.5 (GCM in the functional linear model with scalar response). Let X and Y be
univariate random variables and let Z be a functional random variable defined on [0, 1] as in
Theorem Assume that both (X, Z) and (Y, Z) satisfy the conditions in Theorem [2.3.4]
and that furthermore both u,(z) and v, (2) in Theorem are bounded by some o2 > 0
for all v. Then the GCM has asymptotic pointwise level when testing whether X 1 Y | Z.

Proof.
We will only need to show that \/nM], and /nMg, go to zero in probability, since the
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remaining conditions then follow by the assumptions. This holds by Markov’s inequality and
Theorem 2.3.4] . O

There are many technical assumptions in the theorem above but note that most of them
will hold if Z is a functional Gaussian. If a more general regression method was applied, we
would probably be able to drop many of the technical assumptions required in Theorem
Theorem allows us to test for conditional independence when X and Y are univariate
real and Z is functional. Ideally we would like to consider X, Y and Z all being functional
in nature and testing conditional independence. The rest of the thesis will be devoted to the
pursuit of generalizing the GCM to the case where X, Y and Z belong to a Hilbert space,
which encapsulates both data types. In the upcoming chapter we will delve into the theory
of Hilbert spaces.
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Hilbert spaces, operator theory and Bochner integration

In this chapter we will give an overview of the theory of Hilbert spaces, which will form the
foundation of the subsequent development of probability and statistics on Hilbert spaces.
We will review some of the fundamental properties of Hilbert spaces and then proceed to
define linear functionals and operators between Hilbert spaces. Finally we will show how to
construct an integral for functions with values in a Hilbert space. Throughout this chapter
we will be sparse with proofs in an attempt to be reasonably brief and due to the well-known
nature of many of the given results. For the full proofs about the geometry and fundamentals
of Hilbert spaces see 23] or [12] for proofs about operators and integrals on Hilbert spaces.

3.1 FUNDAMENTAL PROPERTIES OF HILBERT SPACES

In this section we motivate and give the fundamental definitions and theorems regarding
Hilbert spaces. These are mainly results about decompositions of variables in the space or

the space itself using the inner product.

Recall the usual "nice" properties of the Euclidean spaces R%: we have a well-defined distance
measure, a size of each element (a norm), a sense of orthogonality through an inner product
and the space has "no holes" in the sense that if we have a Cauchy sequence in R¢, we can find
a limit of the sequence in R? i.e. the space is complete. Hilbert spaces are a generalization
of the Euclidean spaces that retain all of these concepts (and thus R? are all Hilbert spaces)
but also include more abstract spaces that can be of infinite dimension. We define a Hilbert
space below (for a review of some essential definitions of topology, algebra and analysis, see

the appendix).

Definition 3.1.1 (Hilbert space). A Hilbert space is an inner product space over R or C
that is complete with respect to the metric induced by the inner product.
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Throughout this thesis we will concentrate solely on Hilbert spaces over R. As previously
mentioned the Euclidean spaces are all Hilbert spaces but lets consider some more exotic
examples.

Example 3.1.2 (¢2). Let RY denote the set of all sequences with values in R and denote by
£2(N) (or simply £2 for short) the subset of RY of square-summable sequences i.e.

62(N)={mERN‘ ixi<oo}

n=1

It is straight-forward to show that ¢2 is an inner product space with inner product for z, y € £2

o©
(x,y) = Z TnYn,

n=1

which is finite by Cauchy-Schwarz inequality. The norm is given by

o] = vz, 2y =

Using the tools of real analysis, one can show that ¢2 is in fact complete and is thus a Hilbert
space [23].

Example 3.1.3 (L?[0,1]). Let ([0, 1], Bjo,17,™[0,1]) denote the unit interval with the Borel
o-algebra restricted to the unit interval and the Lebesgue measure m. Consider the set of
measurable functions from [0,1] to R denoted by M]0,1]. Let £2[0,1] be the subset of
M]0, 1] given by

£2[0,1] = {fe/\/l[O, 1] ‘ J fFdmypo ) < oo}.
[0,1]

Define an equivalence relation on £2[0, 1] such that f ~ g <= m(f # g) = 0 and construct
the quotient space L?[0,1] consisting of the equivalence classes under the aforementioned
relation. We will typically abuse notation slightly and still refer to the elements of L?[0,1]
as functions despite them being equivalence classes. It is immediate that this is an inner
product space with inner product for f, g€ L?[0,1]

<f7g>: J fgdm[0,1]7
[0.1]

which is finite by Holder’s inequality. The norm is given by

1l = vz = 4 f[ LS
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The completeness of L?[0, 1] is a deep result in analysis: the Riesz-Fisher theorem (see [23]
for a proof) and using the conclusions of that theorem, we get that L?[0, 1] is a Hilbert space.

A favoured property of the Euclidean spaces is the existence of a basis: a linearly independent
set such that every element of the vector space can be written as a linear combination of

basis elements. We can define a similar concept for Hilbert spaces:

Definition 3.1.4 (Orthonormality, orthogonality and ONB’s). Let # be a Hilbert space

with inner product {-,-) and norm ||-]|.
x,y € H are said to be orthogonal if {x,y) = 0.

A set of elements {e;};er, where I is some index sex, is said to be orthonormal if |le,| = 1

for all n € N and if the elements of the sequence are pairwise orthogonal.

If span({e; }scr) is also dense in H, it is said to be an orthonormal basis (ONB) for H. The
dimension of a Hilbert space is the cardinality of I.

Note that the definition above is not identical to the linear algebra definition of a basis. We
require that every element of 7 can be approximated arbitrarily well with linear combinations
of basis elements whereas the linear algebra definition of a basis requires the existence of a
linear combination equalling the element. The different definitions are however identical for
finite-dimensional spaces. Having an ONB allows us to express elements of the Hilbert space
using "coordinates" and finding these coordinates can be done using the inner product as

can be seen from the following result:

Theorem 3.1.5 (Fourier expansion and Parseval’s identity). Every element x of a Hilbert
space H with ONB {e;};c; can be written

z = Y ees,
iel
which is called the Fourier expansion of x and furthermore we have Parseval identity:
lz])* = D e, e,
icl

We can also express the inner product of two elements z,y € H as

<Z‘, y> = Z<x7 ei><y7 €i>'

el

For a proof of Theorem and the following theorems, see [23]. The usefulness of a basis
diminishes greatly if the index set is not countable. This is at least partly due to the fact
that for uncountable sums to be finite, only a countable number of terms can be non-zero.
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Theorem [3.1.6 gives a characterization of when a Hilbert space has a countable ONB. Recall

that a space is separable if it contains a countable, dense subset.

Theorem 3.1.6 (Separability and countable ONB’s). A Hilbert space is separable if and
only if it has a countable orthonormal basis.

Let us see some examples of ONB’s for the previous examples.

Example 3.1.7 (ONB for /2). Consider ¢? as in Example Consider the ¢? elements e;
which are sequences with a 1 in the i’th position and zero elsewhere. The sequence (e;)7”,
is an ONB for /2. Note that the index set is N so ¢? is infinite-dimensional. The ONB is
countable, so ¢? is separable.

Example 3.1.8 (ONB for L?[0,1]). Consider again L?[0,1] as defined in Example
Consider the sets of L?[0,1] elements

By = {fa(x) = V2sin(nrz)}
By = {fo(x) = 1} U {fn(z) = V2cos(nnz) | n € N}
Bs = {fo(x) = 1} U {fon_1(x) = V2sin(2n7z) | n € N} U {fon(x) = V/2cos(2n7z) | n € N}.

These are all examples of ONB’s for L?[0, 1] (see [12] Theorem 2.4.18 for a proof of this fact).
Note that all the bases are indexed by Ny or N, thus the space is infinite-dimensional and
separable.

In many fields of mathematics we identify two spaces as being "almost the same" (or more
formally isomorphic or congruent) if the structure of the spaces is the same even if the objects

have different names. There is a notion of congruence of metric spaces:

Definition 3.1.9 (Isomorphic metric spaces). Two metric spaces (M, d;) and (Ms,ds) are
said to be isomorphic or congruent if there exists a bijective function ¥ : My — M; such
that

do(w1,22) = di(¥(x1),¥(22)) V1,72 € M.

We’re often only interested in spaces modulo congruence, since if the two spaces are congru-
ent, they have the same "structure". With that in mind we can note the following result.

Theorem 3.1.10. Every infinite-dimensional separable Hilbert space is congruent to ¢2.

This shows that we can essentially think of any separable infinite-dimensional Hilbert space
as 2. This space is the canonical choice for a separable infinite-dimensional Hilbert space
due to the many well-known results about summation of sequences and due to the obvious
choice of ONB in the space.
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3.2 OPERATORS ON HILBERT SPACES

In this section we will give some results about linear mappings between Hilbert spaces (ope-
rators) and functionals on Hilbert spaces. This theory is crucial for the later development of

covariances of Hilbertian random variables and for Hilbertian linear models.

Having defined the fundamental properties of a single Hilbert space, we can start conside-
ring what happens when we consider mappings between and on Hilbert spaces. We will
concentrate on the mappings that preserve the underlying vector space structure; the homo-
morphisms. For vector spaces these are exactly the linear maps and for finite-dimensional
spaces we have a fully developed theory of linear algebra to understand these mappings.
We would also like to preserve the topological structure of the spaces, so we further restrict
ourselves to continuous mappings. On a finite-dimensional space every linear mapping is
continuous but this is not the case on infinite-dimensional spaces. However for linear maps

continuity is intimately connected to boundedness as we will now show.

Definition 3.2.1 (Bounded and linear operators). Let X} and X5 be normed vector spaces

with norms ||-||; and ||| respectively. Let furthermore &7 : X; — X5 be a mapping.

We say that o is linear if &/ (cx) = co/(x) and if & (x +y) = & (x) + & (y) for all x € X
and ce R.

We say that a linear mapping & is bounded if there exists C' > 0 such that ||&/z|2 < C||z|1

for all z € X].

Theorem 3.2.2 (Linear operators are uniformly continuous iff they are bounded). Let X}
and X5 be normed vector spaces. Let furthermore o/ : X1 — X5 be a linear mapping. Then

&7 is bounded if and only if it is uniformly continuous.

Proof.
Let ||| and ||-||2 denote the norms of X; and X, respectively.

If o is uniformly continuous, it is in particular continuous at 0, so we can find § > 0, so
le7z||2 < 1 for all x € X} such that ||z||; < . Then using linearity of &/ and the norm, we

| z]ls = H”( oz )
el

which proves the first implication. For the converse note that boundedness trivially implies

get
£
5 6

< <zl
\5.1?1,

that the functional is Lipschitz, which implies that it is uniformly continuous. O

This leads to the following fundamental definition of a bounded linear operator and the space
of bounded linear operators.
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Definition 3.2.3 (Space of bounded linear operators). Let &} and &> be normed vector
spaces. We denote by B (X, Xs) the set of all bounded linear mappings from X; to Xs. The
elements of B (X, Xs) are called bounded linear operators or simply operators. If X| = Xy =
X we write B(X).

By convention for &7 € B(X;, Xy) we often write &7z to denote &7(z) for z € Aj.
We define the rank of an operator o € B(X, Xy) by

rank(«) = dim(Im(%7)).

Note that the rank of an operator be infinite. The space of bounded linear operators has
some particularly nice properties, for instance it is quite easy to see that it is a vector space.
Furthermore we can define a norm and show that if the codomain of the operators is complete,
then so is the space of bounded linear operators. Recall that a complete normed space is
called a Banach space.

Theorem 3.2.4 (Operator norm and completeness of bounded linear operators). Let X} and
X5 be normed vector spaces with norms ||-||; and ||-||2 respectively and consider the space of
bounded linear operators B (X}, Xs). For o € B(X, X>) we define the operator norm of o
as

|| = sup [z,

z€X,||z|1=1

For any x € X, we have the fundamental inequality
[ zl[2 < [l ||z,

and if A, is a Banach space then so is B(X;, X2) under the operator norm.

With these results these results in mind, we proceed to focus on results more specific to
Hilbert spaces. We will mainly consider two cases, the bounded linear functionals on a
Hilbert space and bounded linear operators between Hilbert spaces. We start by considering
the functionals and introduce the notion of a dual space.

Definition 3.2.5 (Dual space). Let X be a normed vector space, we define the dual space
of X as B(X,R) and denote it by X'*.

One motivation for introducing the idea of a dual space is the fact that we often understand
a space by understanding the well-behaved functions that act on it. One of the surprising
facts about the dual space of a Hilbert space is Riesz representation theorem, which is proved
in [23].
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Theorem 3.2.6 (Riesz representation theorem). Let A be a Hilbert space with inner product
{-,-y and norm ||-||3 and let &/ € H*. Then there exists a unique element h,, € H called the
representer of o7, with the property that

Ah =(hhy), VheH

and ||| = ||ha |l where ||-|| denotes the operator norm.

Note that the Riesz representation theorem implies that #H is self-dual, i.e. the dual space of
‘H is congruent with #.

Corollary 3.2.7 (Hilbert spaces are self-dual). Let H be a Hilbert space. Then H* is

congruent to H.

We thus have a complete characterization of the linear functionals and their behaviour, since
they simply rely on the properties of the inner product. This will prove invaluable for many

proofs later.

In the remainder of this section we will consider the bounded linear operators between two
Hilbert spaces. We can think of such operators as generalizations of operators between
Euclidean spaces which we would typically represent as matrices. We start by proving a
relationship between B(H 1, Hs) and B(Ho, H1) through a generalization of transposition of
matrices.

Theorem 3.2.8 (Adjoint operators and their existence). Let H; and Hs be Hilbert spaces
with inner products (-, ) and {-,-)s respectively. For every & € B(H;,Hs) there exists a
unique element &/* € B(Hz, H1) such that

<.,Q7]’L1,h2>2 =<h1,£7*h2>1, Vhl €H1,h2 EHQ.

Proof.
For each hy € Ha, consider the bounded linear functional ¢ € HY, given by

¢(hy) = (@ hy1, ha)s.

Linearity is obvious and boundedness follows from Cauchy-Schwarz. By Riesz representation
theorem there exists a unique representer y € H1, such that

¢(h1) = Cha, i
This lets us define for each hy € Ho, &/*hy := y, and we thus have

(A hy, hays = (ha, & *hoyy,
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as desired. It remains to show that «/* is a bounded linear operator. Linearity can be seen
by noting that the ¢’s for linear combinations of elements in s decompose linearly. To get
boundedness, we note that (letting ||-|| denote the operator norm)

| *ha |} = (o *ha,  ho)y = (A *hy, haYs < || A *ha|2||hall2 < || ||| *ha 1] k22,

where we have written the norm using the inner product, applied that «/* is the adjoint of
o/, applied Cauchy-Schwarz and used the operator norm inequality. Dividing through by

||« *ha||1 proves boundedness and therefore also the result. O

This leads to the following definition.

Definition 3.2.9 (Self-adjoint operators). Let H; and Ho be Hilbert spaces. Let & €
B(H1, Ha).

The operator defined as /* in Theorem is called the adjoint of <. If Hy = Ho and
o/ = &/* then & is said to be self-adjoint.

The adjoint of an operator and the operator itself share several nice properties as the following

theorem shows (see [12]| for a proof of these properties).

Proposition 3.2.10 (Properties of adjoint operators). Let H; and Hs be separable Hilbert
spaces and let & € B(H1, Hz). Then

1. (*)* = .
2. || = [l].
3. @/*of and of of* are self-adjoint.
4 |lo*dl | = |||
Recall that these are all properties of matrix transposition and matrix transposition is exactly

the finite-dimensional version of finding an adjoint operator. For operators in B(H) we have

further special properties defined below.

Definition 3.2.11 (Definiteness of operators). Let H be a Hilbert space and consider &7 €
B(H).

We say that o/ is non-negative definite or simply non-negative if it is self-adjoint and if

(Ah,hy>0, VYheH.

We say that o7 is positive definite or positive if the inequality is strict.
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Non-negative operators are nice because they admit a square-root decomposition as the
following theorem illustrates.

Proposition 3.2.12 (Square roots of non-negative definite operators). Let H be a Hilbert
space and let & € B(H) be a non-negative operator. Then there exists a unique operator
% € B(H) such that .2 = &7 and such that .# commutes with any operator that commutes
with 7. We call this operator the square-root operator of <7 and denote it by «7/1/2.

When working with an operator </ € B(Hi,Hsz), we could sometimes be interested in the
inverse operation. For the Euclidean spaces we are used to inverting matrices as long as they
are bijective. This still applies in general, i.e. if an operator is bijective (Ker(«) = {0} and
Im() = Hz) we know that an inverse exists. The question is whether it is bounded which

the following theorem asserts in the affirmative.

Proposition 3.2.13 (Inverse operators). Let H; and Hs be Hilbert spaces and consider
o € B(H1,Hs). If o is bijective and o7 ! is the inverse operator, then /1 € B(Ha, H1).

Unfortunately we shall see later that the operators we see in practice on Hilbert spaces are
rarely bijective and thus the existence of an inverse operator can barely ever be assumed.
The operators we see in practice are the compact operators and let us immediately define

what it means for an operator to be compact.

Definition 3.2.14 (Compact operator). Let H; and Hs be Hilbert spaces. A linear mapping
o/ : Hy — Ha is said to be compact if for every bounded sequence {z,};_;, the sequence

{&/xn}_, contains a convergent subsequence.

Compact operators behave much like the well-known linear transformations on the Eucli-
dean spaces, that can be represented by matrices. Let us note a few properties of compact

operators.

Theorem 3.2.15 (Properties of compact operators). Let H1, Ho and H3 be Hilbert spaces
and let o € B(H1,H2) and B € B(Hz, Hz). Then

1. If rank(«/) < oo then « is compact.
2. If & or A is compact, then so is B4 .

3. 7 is compact if and only if there exists a sequence of operators {<,}_; with finite

rank such that ||« — o,|| — 0 as n — o0 where ||-|| denotes the operator norm.

4. o is compact if and only if .&/* is compact.
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Proof.
We only prove the first two claims and refer to [12] for a proof of the remaining two claims.

For the first claim note that if Im(.«7) is finite-dimensional, it is isomorphic to R™ and thus

the result follows immediately from Bolzano-Weierstrass theorem.

For the second claim, let (h,,)nen be a bounded sequence in H;. If o is compact, the sequence
(o7 hy,)nen contains a convergent subsequence and since £ is continuous, (B4 h,)nen also
contains a convergent subsequence and thus &/ % is compact. If instead % is compact, we note
that the sequence (&/hy,)nen is bounded, since o is continuous, and therefore (B4 h,,)nen
contains a convergent subsequence, since 2 is compact, which proves that .« is compact.

O

The theorem above shows that the compact operators are exactly the generalization of the
finite-rank operators in the sense that they can be approximated arbitrarily well by finite-
rank operators. Unlike the usual finite-dimensional cases the identity operator is not compact

as we shall see below.

Theorem 3.2.16 (Identity operator is not compact). Let H be an infinite-dimensional

Hilbert space. Then the identity operator on H is not compact.

Proof.
Let ||-|| denote the norm on H, .# denote the identity operator and let (e, )nen be an ortho-
normal basis for H. Note that (e, )nen is a bounded sequence and that for i # j

|Fei — Fejll = lles — ejll = 4/ lleall® + lles |2 = V2,

by Parseval’s identity. Therefore (#e,,)nen does not contain a convergent subsequence and
thus the operator is not compact. O

It is perhaps a little surprising that the identity operator is not well-behaved and this will
have consequences for the probability theory we shall develop later. As alluded to earlier,
we can show that none of the the compact operators are bijective and thus we cannot invert

them.

Corollary 3.2.17 (Bijective operators are not compact). Let H; and H2 be infinite-dimensional
Hilbert spaces and assume that &7 € B(H1, Hz) is bijective. Then & is not compact.

Proof.
Note that
ot = 7,
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where .# denotes the identity operator on H;. If either o or its inverse were compact, this
would contradict Theorem [3.2.15| since .# is not compact and therefore both .o/ and </ ~!
are not compact. O

The compact operators are nice in particular because of the spectral theory developed for
them. Recall that for the Euclidean spaces, when given a symmetric matrix, we can find an
eigen-decomposition of the matrix into an orthonormal basis. This is the crucial theoretical
underpinnings of principal component analysis for multivariate random variables amongst
other powerful results. We would like to generalize the concept of eigen-decompositions and
compact operators are exactly the operators where this is possible as we shall see. Let us

define eigenvectors and -values.

Definition 3.2.18 (Eigen-decomposition of operators). Let H be a Hilbert space and let
&/ € B(H). Assume that there exists A € R and e € H so that

e = )e,

then we say that X is an eigenvalue of o/ and e is an eigenvector (or sometimes eigenfunction

if H is a function space).

This is basically the same definition as for matrices and finite-dimensional linear transforma-
tions. We will at times draw upon the notion of an outer product on Hilbert spaces which
generalizes the outer product of vectors on the Euclidean spaces.

Definition 3.2.19 (Outer product). Let H; and Hs be Hilbert spaces with inner products
(-, >1 and (-, -y2. Let hy € Hy and he € Hs. The linear mapping from H; to Ha given by

h1 ®1 he =<, hiyrhe

is called the outer product of hi with hy. Similarly we define the outer product of ho with
hi as
ho @2 h1 = (-, ha)2hi.

If Hy = Ho we simply write h1 @ hy and ho @ hy respectively.

Remark 3.2.20 (Outer product notation). The outer product is typically denoted by ®,
since it is intimately connected with the tensor product of Hilbert spaces. We will not delve
into the theory of tensor products and to avoid any confusion for other readers unfamiliar
with this theory, we will instead employ the symbol ® to denote the outer product.

Some authors also define the outer product h; @1 he = (-, ha)2hq i.e. the opposite of what
was done in this thesis. We follow the notation in [12] and as such have chosen to do it as in
the definition.
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Let us note some simple properties of the outer product.

Theorem 3.2.21 (Properties of the outer product). Let H; and Hs be Hilbert spaces with
inner products ¢(-,- and {-,-); and norms |||y and |-||2 respectively. Let hy,hi € Hy and
hs, hs € Ho and a,b € R. Then

1. h1 @1 hg € %(,thHg) with ||h1 @1 hQH = Hh1||1||h2H2, where |||| denotes the operator

norm.
2. (h1 + h1) ©1 (ha + ha) = hi ©1 ho + hy O1 ha + hy @1 ha + hy O ho.
3. (ah1) @ (bhg) = ab(hy ®O1 ha).

4. rank(h; @1 he) = 1 if hy and hs are non-zero.

5. (h1 ®1 hg)* = h2 O)) hl-

Proof.

1. By definition and Cauchy-Schwarz, we have

|hy @1 hall = sup Kk, hadrhalla < sup  [|Rfl]Ball]|bellz = (Bl ]Bell2.
heHty,||hll1 heHy,||hll1

Setting h= I\Zi\l yields equality in the above, thus proving the statement.
2. Consider how the operator acts on a h € H; and use properties of the inner product.
3. Similar to above.

4. Every element in Im(h; ®; hg) can be written on the form c¢ - hy for some ¢ € R.
Conversely, given some ¢ € R, we can find h € H;, so that {(h, hi) = ¢, thus Im(h; ©1
hs) = span(hz), which is one-dimensional and therefore rank(h; @1 ho) = 1.

5. Straightforward calculations show that for any hy € H; and hy € Ha, we have

{(h1 &1 h2)ﬁl» 52>2 = {(hq, B1>1h2, ﬁ2>2 = (ha, ﬁ1>1<h2, il2>2
= <f~11, <iL2, hayohi) = <}~11, (h2 ®2 hl)il2>2,

proving the statement.
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With that in mind, we can give the spectral theorem for compact, self-adjoint operators.

Theorem 3.2.22 (Spectral theorem for compact and self-adjoint operators). Let H be a
Hilbert space and let o7 € B(H) be a compact, self-adjoint operator.

The set of non-zero eigenvalues of &7 is either finite or consists of a sequence tending to zero.
Each non-zero eigenvalue has finite multiplicity and eigenvectors corresponding to different

eigenvalues are orthogonal.

Letting |A1] = |A2| = ... denote the eigenvalues of o/ and (e, );~_; denote the corresponding
eigenvectors, we can apply the Gram-Schmidt procedure to (ey,);_; and get an orthonormal
basis (€,);_; of Im(&/) such that

o0
o =Y NjE; 08,
j=1

i.e. for every he H

dh =3 N(Ej, h)e;.

Jj=1

If o7 is also non-negative-definite, then all the eigenvalues are non-negative.

Ideally we would like a way to decompose any compact operator between two Hilbert spa-
ces. Recall that for any operator &/ € B(H;,H2) the operator &7*« was self-adjoint. If
&/ is compact, we know that composition with a bounded operator produces a compact
operator, thus o7 *.¢f is also compact. This implies that «7*.o/ has an eigen-decomposition
and similarly for .o/.e/*. This leads to the following theorem and definition of the singular
value decomposition for operators that is a straightforward generalization of the concept for
matrices.

Theorem 3.2.23. Let H; and Ho be Hilbert spaces and let o/ € B(H;1,Hz2) be a compact
operator. Then denoting (A?)le the non-ascending eigenvalues of &*o/ (or equivalently
o *), (e1j)j=; the orthonormal eigenvectors of &/*o/ and (eq;);L; the orthonormal eigen-

vectors of &/.a7* such that @/ ey; = Aje1;, we have
v sl
o = Z Ajer; O1 ezj,
j=1

i.e. for h € H;q

s8]
A h = )\j<61j,h>162j,
j=1
where ¢+, -»1 denotes the inner product in H;. We call the decomposition above the singular

value decomposition and ((A3, e15,e5))7=, a singular system for o .
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The singular value decomposition of a compact operator has many applications and uses, for
instance it lets us calculate the norm of an operator with ease.

Theorem 3.2.24 (Operator norm is largest singular value). Let H; and Hz be Hilbert
spaces and let o/ € B(H1,H2) be a compact operator with largest singular value A;. Then

] = A

The singular value decomposition of a compact operator is in fact a fundamental property

of compact operators as the next theorem shows.

Theorem 3.2.25 (Compact if and only if singular value decomposition). Let H; and Hs be
Hilbert spaces and let & € B(H1,H2). < is compact if and only if &7 has a singular value

decomposition.

Proof.
We know that every compact operator has a singular value decomposition, so to prove the

converse, assume that we’re given an operator &/ with singular system ((A?, e1j,e2;))72; and
define

Ay = > Nj(e1; @1 e3;).
j=1

Each 7, is obviously finite-dimensional and we have ||/ — || = A1, by Theorem [3.2.24]
which goes to 0 as n — 00. We have now approximated 7 by a sequence of finite-dimensional
operators so by Theorem [3.2.15] 7 is also compact, proving the statement. O

Now that we have defined and explored the compact operators, we will define the final two
classes of operators, that we will need for the later work; the Hilbert-Schmidt operators and

the trace class operators. We start by considering the Hilbert-Schmidt operators.

Definition 3.2.26 (Hilbert-Schmidt operators). Let H; and Ho be Hilbert spaces, let (e;);er
be an orthonormal basis for H; and let o/ € B(H1, Hz). Letting ||-||2 denote the norm on
HQ, if

D3 < oo,

iel

then o/ is called a Hilbert-Schmidt operator. The collection of Hilbert-Schmidt operators in
B(H1,H2) is denoted Bys(Hi,H2). The space of Hilbert-Schmidt operators is an inner-
product space with

<b<27, %>HS = Z<%6i’ @€i>2
iel
for o7, % € B(H1,Hs), where (-, )5 is the inner product on Hs. The corresponding norm is
1 |55 = Dl ell3-

i€l
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For a proof that the construction above is well-defined, see [12].
Let us note some nice properties of Hilbert-Schmidt operators and in particular how the

outer product behaves with the Hilbert-Schmidt norm and inner product.

Theorem 3.2.27 (Properties of Hilbert-Schmidt operators). Let H; and Hs be Hilbert
spaces with inner products {-,-); and {-,-); and norms |-||; and ||-||2 respectively. Let & €
%HS(Hl,,HQ) and further hl, ill € Hl and hQ, iLQ € 7‘[2.

1. g*¢ %HS(H27H1).
2. o/ is compact.

3. If (A;)2, are the singular values for &/ then

(28]
1 s = D5 A5

j=1

4. {hy @1 ha, h1 O1 hodars = (b, hidilha, hoda.

5. ||h1 O1 hallas = [|hall1]hz]2-

Proof.
For proofs of the first three properties, see [12].

For the fourth claim, let (e;);er be an ONB for H;. We get by definition

Chi O1 ha, hy O1 B2>HS = Z«@u hi)1ha,{e;, /~11>1712>2

i€l
= Cha,y hada Y Kei, hayiCei, hayy = (ha, b yidha, hada,
il
where the final equality is due to Parseval’s identity.

The fifth claim follows immediately from the fourth. O

The fact that the Hilbert-Schmidt norm can be written as the sum of the squared singular
values is highly useful in practice. The space of Hilbert-Schmidt operators is particularly
nice because it forms a Hilbert space and we can explicitly construct an ONB for the space
by combining ONB’s of the domain and image Hilbert spaces.

Theorem 3.2.28 (Basis for Hilbert-Schmidt operators). Let 7, and H3 be Hilbert spaces
with orthonormal bases (e1;)ier and (eg;)jes respectively. The space Byg(Hi, He) is a
Hilbert space and has an orthonormal basis given by (e1; ®1 €2;)(i,j)erx.J-
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The theorem above also states, that if both Hilbert spaces are separable, the space of Hilbert-
Schmidt operators will also be separable. Note also that the theorem shows that the finite
rank operators are dense in the space of Hilbert-Schmidt operators since the orthonormal

basis consists of rank one operators.

We saw before that the Hilbert-Schmidt operators have square-summable singular values, so
a natural extension could be to consider operators with summable singular values. These are
the final class of operators; the trace class operators.

Definition 3.2.29 (Trace-class operators). Let H; and #Hy be Hilbert spaces and let (e;);er
be an orthonormal basis for H;. Denoting the inner product on H; by {:,->1, an operator
o € B(H1,Hsz) is said to be trace-class if

Il | 7r = Y (7 * ) s, ein

el

is finite. We call the quantity ||«/|rr the trace norm of o/. We denote the space of all
trace-class operators from Hi to Ha by Brr(Hi, Ha).

An argument akin to the one employed for Hilbert-Schmidt operators could show that this
is independent of the choice of orthonormal basis for 7. The trace class operators have

several nice properties as seen below.

Theorem 3.2.30 (Properties of trace-class operators). Let H; and Hs be Hilbert spaces
and let o € B(H1,H2) be trace class. Then

1. o/ is Hilbert-Schmidt and compact.

2. If (Aj)j=; are the singular values of &/ then

|l |l7r = >} Aj.

J=1

3. If Hy = Hy and & is self-adjoint with eigenvalue sequence denoted by (/\j)‘j’-f“:1 then

(AT

j=1

We shall later see that the natural extension of the covariance of random variables to the
Hilbert space setting, leads to the covariance being a trace class operator.
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3.3 INTEGRATION OF HILBERTIAN FUNCTIONS

In this section we will develop a rigorous theory of integration for functions with values in a
separable Hilbert space. This is the theory of Bochner integration and constructs integrals

in a way paralleling the construction of the Lebesgue integral for real-valued functions.

When defining the integral of a measurable real-valued function defined on some background
measure space (X, E, 1), we consider an approximating sequence of simple functions where the
integrals are obvious and define the integral of the function as the limit of integrals of simple
functions. We will construct a similar idea for Hilbertian functions by first defining what it
means for a function to be measurable. While most of the integration theory developed will

work in more general spaces, we will present the theory solely for Hilbert spaces.

Recall that for an R-valued function f, measurability amounts to the pre-image of every
set F € E under f to be an element of the Borel o-algebra. Even though the concept of a
Borel o-algebra generalizes well, this concept of measurability is not always useful on general
infinite-dimensional spaces. The key property that we would like to retain is the idea of
approximating a function with simple functions. This is the notion of strong measurability
as defined below.

Definition 3.3.1 (Simple Hilbertian function). Let (X,E, u) be a measure space and let
‘H be a Hilbert space. A function f : X — H is said to be simple if there exists k € N,
Aq,...,Ar € Eand hq,...,h; € H such that

Note that the representation is not unique.

Definition 3.3.2 (Strong measurability of Hilbertian functions). Let (X, E, u) be a measure
space and let H be a Hilbert space. A function f : X — H is said to be strongly measurable if
there exists a sequence of simple functions f, : XY — H such that f, converges to f pointwise,
i.e. for each x € X we have lim,_,. f,(z) = f(z).

As mentioned previously, we could also generalize the notion of a Borel o-algebra and thus
define the more familiar Borel measurability. Recall that the Borel o-algebra on a metric

space, X, denoted by B(X), is the smallest o-algebra containing the open sets on the space.

Definition 3.3.3 (Borel measurability of Hilbertian functions). Let (X,E, u) be a measure
space and let H be a Hilbert space. A function f: X — H is said to be Borel measurable if

VBeB(H): f~(B)eE.
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Finally there is a third form of measurability known as weak measurability that transforms
the concern of measurability to the well-known case of R-valued functions through the linear
functionals on # i.e. using the inner product.

Definition 3.3.4 (Weak measurability of Hilbertian functions). Let (X, E, 1) be a measure
space and let H be a Hilbert space. A function f : X — H is said to be weakly measurable
if the function {f, h) is measurable as a real-valued function for all h € H.

The interplay between these forms of measurability is well-studied and the crucial result is

the following theorem by Pettis.

Theorem 3.3.5 (Pettis measurability theorem). Let (X,E, 1) be a measure space and let
‘H be a Hilbert space. Let f: X — H be some function.

We say that the function is separably valued if there exists a separable closed subset S of H
such that f(x) e S for all z € X.

The following are equivalent:
1. f is strongly measurable.
2. f is separably valued and weakly measurable.

3. f is separably valued and Borel measurable.

For a proof of the theorem, see [24]. The Pettis measurability theorem also holds for the

p-almost everywhere equivalent properties above.

Remark 3.3.6 (Measurability on separable Hilbert spaces). When working in a separable
Hilbert space every function is separably valued, so the three notions of measurability coin-
cide. To avoid any measurability concerns we will henceforth assume that the Hilbert spaces
we are working on are separable. Thus we will simply call a function measurable if it satisfies
any of the three definitions and use them interchangeably.

With the measurability concerns out of the way, we will proceed to define the Bochner integral
of a Hilbertian function by first defining integrability and the integral of a simple function.

Definition 3.3.7 (Bochner integrals and integrability of simple functions). Let (X, E, 1) be

a measure space and let H be a Hilbert space. Any simple function f with decomposition

k
f@) = Y La(@)h
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is said to be integrable if u(A;) < oo for all ¢ € {1,...,k} and the Bochner integral of f is
defined as

k
f fdp= Z hip(As).
X i=1

We can extend this to a generic measurable function in the same way that this was done for

the usual Lebesgue integration theory.

Definition 3.3.8 (Bochner integrability and integrals). Let (X,E, u) be a measure space
and let ‘H be a Hilbert space. Let furthermore f : X — H be measurable. We say that f is
Bochner integrable if there exists a sequence (f, )i, of simple and integrable functions such
that

iy [ 1= flld=o.

n—o

In this case we define the Bochner integral of f as

J fdu= limj fndp.
X n—o0 X

Let us prove that the above construction is well-defined in the sense that the integral of
the simple functions does not depend on its representation and the integral of a measurable
function does not depend on the specific approximating sequence of simple functions.

Theorem 3.3.9 (Bochner integrals are well-defined). Let (X,E,u) be a measure space
and let H be a Hilbert space. The Bochner integral of both simple functions and general
measurable functions from & to H is well-defined.

Proof.
The integral of simple functions is independent of the representation by the same arguments
that are used for the Lebesgue integral, see for instance [23] Lemma 9.1.

We still need to prove that the limit in the definition of the Bochner integral exists for
non-simple f and is independent of the choice of approximating sequence. To that end let
f + X — H be Bochner integrable and let (f,)_; be an approximating sequence of simple

functions.

We start by showing that the integrals of the simple functions form a Cauchy sequence. Note

that for any simple function f,, we have from the triangle inequality

HLkaLwnw

In particular this holds for f,, — f,, for m,n € N and therefore again by the triangle inequality

HL Judit= L I d“‘ s L 1o = fonll die < L o= F1l dpe+ L 1 = fnll dpe
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which goes to zero by assumption. This shows that the integrals are a Cauchy sequence and
since H is complete, the limit exists.

If (gn);-_; was another approximating sequence of simple functions, we could represent both
fn and g,, using the same sets and the triangle inequality would thus still be applicable to

the integral of their difference. We would get

[ = o duH <[ M=ol s [ 1= st [ 1=l

which again converges to zero, showing that the limit is the same for all approximating

sequences. O

The criterion of integrability is rather unwieldy in practice but fortunately we have the
following theorem, that gives an easier condition to check.

Theorem 3.3.10 (Hilbertian functions are integrable if their norm is integrable). Let
(X,E, ) be a measure space and let  be a Hilbert space. Let f : X — H be a mea-
surable function and assume that §,.||f||dy < co. Then f is Bochner integrable.

For a proof of this, see [12]. The Bochner integral has all of the nice properties of the usual

integral including dominated convergence and the triangle inequality:

Theorem 3.3.11 (Dominated convergence theorem for Bochner integral). Let (X,E, u) be
a measure space and let H be a Hilbert space. Let f, : X — H be a sequence of Bochner
integrable functions that converges to some f : X — H. If there exists a non-negative
Lebesgue integrable function g such that || f,,|| < g for all n p-a.e., then f is Bochner integrable

J fdp = lim J fndp.
Theorem 3.3.12 (Triangle inequality for Bochner integral). Let (X,E,u) be a measure

and

space and let H be a Hilbert space. Let f: X — H be a Bochner integrable function. Then

HLfduH <[ 1714

An application of dominated convergence yields that the Bochner integral is also well-behaved
when working with sequences of integrable functions.

Theorem 3.3.13 (Interchanging series and Bochner integrals). Let (X, E, ) be a measure
space and let H be a Hilbert space with norm ||-||. Let f,, : X — H be a sequence of Bochner

integrable functions such that

(28]
| sl <o
Xn:l
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o0

(by the usual theorems for Lebesgue integration, this is equivalent to ;" { .|| fnll du < 0)
then >, f,(x) converges p-a.e. and

2 L fud = L 2 foda.

Proof.

Define the partial sums h,(z) = i, fi(x), the full series h(z) = Y., f.(z) and the series
of norms g(x) = 3.2, || fu ().

Note first that the assumption of integrability of g implies that g is finite p-a.e. immediately.

This in turn implies that A is finite 4 a.e. and that h, — h as n — oo.

Note further that by the triangle inequality
n o€’
@)l < Yl fa@)l < Yl (@) = g(@).
i=1 i=1

We can now apply dominated convergence; Theorem |3.3.11| and get that h is integrable and
that

n x$L
hdp = lim hp(z)dpy = lim inxdu= anxdu
| nan=tim | hto) D RECLTED W A
as desired. O

One of the most desirable properties of the Bochner integral is the fact that it is well-behaved

when composed with operators.

Theorem 3.3.14 (Interchanging operators and Bochner integrals). Let (X,E,u) be a me-
asure space and let H; and Ho be Hilbert spaces. Let o € B(H1,Hsz) and let f: X — H;
be a Bochner integrable function. Then &/ f is Bochner integrable and

(] )= o

When we start working with covariances of Hilbertian random variables, we shall see many
random operators, i.e. operator-valued random variables. The following theorem shows that
Bochner integrals are also well-behaved for these mappings when the mapping takes values
in the space of Hilbert-Schmidt operators.

Theorem 3.3.15 (Interchanging integrals and operator-valued mappings). Let (X, E, ) be a
measure space and let 7, and H2 be separable Hilbert spaces. Let # : X — Byg(H1,Ha) be
an operator-valued mapping and assume that it is Bochner integrable i.e. SX |-Z s dp < .

Then for any h € H;
J Fhdu = (J ﬁdu) h.
X x
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Proof.
Let h € H1 be given and define the mapping &4 : B(H1,Hs) — Ha by 9(F) = Fh. With
this definition the desired result becomes

J.X%(ff)dp _y (Lﬁdy) .

The result follows from Theorem [3.3.14]if we can show that & € B(Bys(Hi1, Hz), H2) since
Bys(H1,Hs) is a Hilbert space. This holds since by definition

11 = sup |- Fhll2 < sup [-Z leslhlls = [IAll < oo,
ﬁe‘BHs(Hth),Hﬁl\Hszl 96%1{5(7‘[1,7‘[2),”9\”}{5:1

where |-||; and ||-||2 denotes the norm in H; and Hs respectively.
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In this chapter we will generalize the usual concepts of probability theory on R? to abstract
infinite-dimensional Hilbert spaces. We will show how to define random variables with values
in infinite-dimensional Hilbert spaces and prove several of their properties. We will also prove
the existence of conditional expectations for Hilbertian random variables and their properties.
Finally we will introduce simple statistics for Hilbertian random variables with a focus on

moment estimators and linear models between Hilbert spaces.

4.1 HILBERTIAN PROBABILITY THEORY

In this section we generalize the well-known ideas from the theory of real-valued random
variables to random variables with values in a separable Hilbert space. In all that follows we
will only consider separable Hilbert spaces for the reasons mentioned in the previous chapter:
countable orthonormal bases and avoiding measurability concerns.

In the usual construction of measure-theoretic probability, random variables are defined as
measure functions from a probability space (2, F, P) into the real numbers with the Borel
c-algebra, (R,B). This mapping then defines a push-forward probability measure X (P) on
(R,B) such that

X(P)(B)=P(XeB)=P({lwe Q| X(w)e B}) forall BeB.

This measure is then referred to as the distribution of the random variable. We will echo this
construction by defining random variables as Borel measurable mappings from the probability
space (Q,F, P) into (H,B(H)).

Obtaining an intuition about a o-algebra may be difficult but it is often helpful to know some
generators of the o-algebra to discover which sets are "fundamental" to the o-algebra. By
definition B(#) is generated by the open sets on H but even that is not particularly helpful,
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since these are in themselves quite unwieldy. It turns out that the o-algebra is also generated

by the pre-images of the open sets on R under the linear functionals on #.

Theorem 4.1.1 (Generator of B(#)). Let H be a Hilbert space, let O denote the open sets
on R and for each h € H define ¢p(x) = {x, h), i.e. ¢y is the linear functional associated
with h through Riesz representation theorem. Let M be the family of sets given by

M = {¢;1(0) | he H,0 € O}.
Then o(M) = B(H).

See |12] for a proof of this. We can now state a handy characterization of measurability wrt.

(H,B(#)).

Theorem 4.1.2 (Measurability wrt. B(#) and distributions on H). Let X be a mapping
from some probability space (2,F, P) into the separable Hilbert space H with the Borel
o-algebra: (H,B(#)). Then

1. X is measurable if and only if (X, h) is measurable for all h € H.

2. If X is measurable, its distribution is uniquely determined by the marginal distributions
of (X, h) for h e H.

See [12| for a proof. Theorem states, that we can transform many of our problems on
‘H to problems on R, where we have a large and well-known toolbox of results to apply. We

can now define a Hilbertian random variable:

Definition 4.1.3 (Hilbertian random variable). Let (Q,F, P) be a probability space and
let (H,B(#)) denote the measurable space consisting of a Hilbert space H and the Borel
o-algebra on H. A measurable mapping X :  — H is denoted a Hilbertian random variable.

We saw in Theorem [£.1.2] that a Hilbertian random variable X is characterized uniquely by
applying the inner product to X and elements of H. By Riesz representation theorem this
amounts knowing the distribution of ¢(X) for all ¢ € H*. Thus the behaviour of the linear
functionals on X uniquely determines the distribution and this leads to following definition.

Definition 4.1.4 (Gaussian Hilbertian random variables). Let X be a Hilbertian random
variable on H. We say that X is Gaussian or normal if (X, h) is normally distributed (in
the usual sense) for all h € H.

We are used to characterizing a Gaussian random variable by its mean and variance on R, so
ideally we would like to find something akin to a mean and a variance for Hilbertian random
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variables to characterize Gaussians on H. These should be well-behaved when applying the
linear functionals, so that we can easily find the mean and variance of (X, h) for each h € H.

Let us first consider the mean. We would like to construct a functional of functionals — a
functional that takes an element (-, h) of H* and returns the mean of (X, h). It is easy to
see that from the linearity of the usual expectation on R that this is a linear functional on
H*. Note also that by the triangle inequality for integrals and Cauchy-Schwarz inequality,
we have

[E(X, )| < EKX, byl < B[ X][[|A]-

This implies that the functional is bounded if the norm of X has finite first moment. We
could instead view this as a mapping from # into R that sends h to E({X, h)) which would
still be a bounded linear functional, since the inner product is bilinear, thus the mean is also
a bounded linear functional on . By Riesz representation theorem this implies that there
exists a unique representer p € H so that we can express the mean of (X, h) simply as {u, h)
for any h € H.

This is an implicit definition of the mean (which would define the Pettis integral of X) but
we have already developed the theory of Bochner integration, so we instead define the mean
of X as a "weighted" average of the outcomes of the random variable, just as it was done in

the univariate case. This leads to the following definition.

Definition 4.1.5 (Mean of Hilbertian random variable). Let X be a Hilbertian random
variable and assume that F|| X || < oo. The mean element or expectation of X is given by the

Bochner integral
E(X):=| XdP.
Q

It turns out that the implicit definition and the Bochner definition are the same in our case.

Theorem 4.1.6 (Characterization of the mean of Hilbertian random variable). Let X be a
Hilbertian random variable with values in H and assume that F|X|| < oo. Let p = E(X).
Then for any h € H

(uy by = E((X, ).

Proof.
The proof is straightforward by noting that the inner product defines a linear functional for
each h € H and then the result follows from Theorem [3.3.14 O

The definition of the mean using the Bochner integral is preferred over the implicit definition,
since we have theorems stating the behaviour of the Bochner integral when composing with
linear functionals as applied in the previous proof. The derivation above leads to the nice
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dual view of the mean as both a measure of central tendency and as the representer for the
functional that takes each h to the mean of (X, h).

We are left with the issue of computing the variance of (X, h) for any h € H. We could try
to define a functional as with the implicit definition of the mean that maps h to Var({(X, h))
but unfortunately this is not a linear operation. Note however that this is a quadratic form,
since if we define the bilinear form (h, k) — Cov((X, h),{X, k)) then the variance is simply
the bilinear form applied to (h,h). The bilinear form is nicer than the quadratic form but
note that if the bilinear form is bounded, there exists an operator J# € B(H) so that the
bilinear form can be written (#'h,k). A calculation similar to the one done for the mean
will show that the bilinear form is bounded if || X|| has finite second moment. We can deduce
the exact form of the aforementioned operator, since by properties of the inner product and
the just proven property of the mean of a Hilbertian random variable, we get

Cov({X, h, (X, k) = E[((X, by =, ) (X k) = s k)] = E((X = g1, XX = i, b))
= E({X = 1, (X = ), k) = CBX = p, (X = ), k).

Thus the operator is defined by the relation J#h = (E({X — u, h)(X — u)). Note that since
(X —p) (X —p) =<X — p, )(X — p), we can calculate the mean above using a Bochner
integral over Bys(H) which we have shown is a separable Hilbert space, whenever H is
separable. This leads to the following definition.

Definition 4.1.7 (Covariance operator of Hilbertian random variable). Let X be a Hilber-
tian random variable and assume E||X||? < oo. Let u = E(X). We define the covariance
operator of X as the Bochner integral

Cov(X) = B((X — 1) © (X — p)) = L(X ~ W)@ (X - ) dP.

It is not immediately obvious how the outer product and the expectation interact so to add

some intuition, we prove the following theorem.

Theorem 4.1.8 (Expectation of outer product of independent variables). Let X; and X,

be Hilbertian random variables on H; and Hs, respectively.

Then for any h € H;
E(X; ®1 X2)h = E((X; 1 X2)h),

and if X; 1 X5, we have

E(X: O X») = E(X1) ®1 B(X»).

Proof.
The first claim follows immediately from Theorem [3.3.15] Letting <-,-) denote the inner
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product on H1, the second claim holds since for every h € ‘Hy

E(X1 O1 X2)h = E((X1 O1 X2)h) = E((h, X1)X>)
= E({(X1,h1))E(Xz) = (E(X1) O1 E(X2))h,

where the second to last inequality is due to the independence of X; and Xo. O

Note that Theorem still holds when X is not random. Let us now prove that the
covariance does in fact satisfy the implicit definition given in the motivation and some other

properties of the covariance operator.

Theorem 4.1.9 (Properties of covariance operator). Let X be a Hilbertian random variable
and assume E|X||? < oo. Let u = E(X) and # be the covariance operator of X. Then

1. {Hh, kY = Cov({X, h),{X, k)).
2. ¥ is non-negative-definite and trace-class with ||¢||rg = Var| X|.
3. X =E(XOX)—-pn0Op

4. # =0if and only if P(X = p) = 1.

Proof.

1. By using Theorem [£.1.8] Theorem [.1.6] and various properties of the inner product,
we get
(K h, k) = CE[Ch, X — p)(X = p)], k) = E[<h, X — (X — p), k)]
= E[({X, h) = {p, i) KX, k) — (s K))]
= E[({X, h) — E[{X, )]) (X, k) — E[(X, k)])]
= Cov({X, h),{X, k)),

which proves the result.

2. From the previous claim, we can see that the covariance is non-negative-definite. Let-
ting (e, )nen, we also use the previous claim to calculate the trace norm and get

|Z TR = 2<%ei,ei> = Z Var({X, e;)).

The sum of variances is dominated by the sum of second moments of (X, e;» which by
Parseval’s identity is exactly E|/X||? which we have assumed to be finite. This shows
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that the sum is finite and algebraic manipulations are sensible. To get the exact value
we will juggle expectations and summations using Theorem [3.3.13|and apply Parseval’s
identity to get

1 = 3 Var((X,e)) = 3 B [(X, e — G e))?]
=1

i=1

=F lz<X, ei>21 + Z(u,ei>2 —2F lZ@, eiXX, ei>1

i=1 i=1

= BIIX|* = [lpl* = Var (|| X])),
as desired.
3. By linearity of the outer product and expectation, we have
H = E(XOX)-E(X0pu - EuoX)+Euop).
The final term is not random, so is simply equal to u® . Note that for h € H, we have

E(X Ou)h = E(h, X)p) = {u, hpp = (p © p)h,

and similarly for the term E(u ® X), so both are equal to u ® p, which proves the
statement.

4. If X = p a.s. we can partition the integral in the definition of covariance operator into
a region where X = y and one where X # u and get that ¢ is zero.

Assume instead that J# is 0. Then by the first claim for any h € H,
0 = (A h, h) = Var((X, hy),

which implies that (X, h) is equal to E({X,h)) = {u,h) almost surely. Let (e;);en be
an ONB for H and set A equal to the set of w € Q where (X (w),e;) = (i, e;) for all
i € N. Countable intersections of almost sure sets are almost sure so P(A) = 1. Then
for each w € A, we have by applying the Fourier expansion

oL s8]
p= Y eie = Y (X (W), eei = X (w),
i=1 i=1
so X = p almost surely.
O

With these definitions in mind we can note that just like in the univariate and multivariate

cases, we can characterize Gaussian distributions by their mean and covariance operator.
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Theorem 4.1.10 (Characterization of Hilbertian Gaussian random variables). Let H be
a Hilbert space. Given any p € H and non-negative-definite 2 € Brr(H) there exists a
Hilbertian random variable X that is Gaussian with mean y and covariance 2. Conversely,
if X is Gaussian, X has finite second moment so that the mean and covariance of X exist.
We denote this Gaussian with N (u, ).

Proof.
A proof can be provided by using characteristic functionals, see [28] Proposition 2.7, 2.8 and
Theorem IV.2.4. O

Remark 4.1.11 (Non-existence of infinite-dimensional standard Gaussian). If we assume
that H is infinite-dimensional, then we saw earlier that the identity operator .# is not compact
and hence not a trace-class operator. Therefore there does not exist a Gaussian Hilbertian
random variable with covariance operator equal to the identity operator. We're used to the
idea of being given some arbitrary normal distribution and then "whitening" it by subtracting
the mean and multiplying by the square root of the inverse of the covariance to get a standard
normal distribution. This procedure is no longer available to us (since also the covariance is
non-invertible) and as such no infinite-dimensional Gaussian is the "reference" Gaussian as

is the case in finite dimensions.

We can also note that just as for independent finite-dimensional Gaussian variables, we can
form linear combinations of independent infinite-dimensional Gaussian variables and retain

the Gaussian distribution.

Theorem 4.1.12 (Linear combinations of independent Gaussians are Gaussian). Let X and
Y be independent Gaussian random variables on Hilbert spaces Hx and Hy respectively.
Let ux and py denote the mean of X and Y respectively and let J£x and J#y denote the
covariance operators. Let &/x and <7 be bounded operators to a third Hilbert space H from

Hx and Hy respectively.

Then o/x X + oY is a Hilbertian Gaussian with mean y = @/xux + @y puy and covariance
operator = ofx Hx 5 + oy Ky o).

Proof.
For a proof see [18] Proposition 4.8 and 4.9. O

Earlier we showed how to construct an eigen-decomposition for non-negative operators, which

we can now use to decompose the covariance operator.
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Theorem 4.1.13 (Eigen-decomposition of covariance operator). Let X be a Hilbertian
random variable with second moment and let 2 denote the covariance of X. Then &

admits an eigen-decomposition

o0
% = Z /\jej ®€j,
j=1

ve
j=
negative and tending to zero with each eigenvalue having finite multiplicity.

where (e;) j=

1 is an orthonormal basis for Im(.#") and the eigenvalues (\;)7, are non-

Using the orthonormal basis from the decomposition of the covariance operator lets us de-
compose a Hilbertian random variable into a sequence of real-valued random variables as

seen below.

Theorem 4.1.14 (Fourier expansion of random variables). Let X be a Hilbertian random
variable with second moment and let p and J¢ denote the mean and covariance of X re-

spectively. Let further (A;)72; and (e;);Z; be the eigenvalues and -vectors of the covariance

j=1 =
operator. Then with probability 1, we have

s}
X = Z<X,€j>€j,
j=1
where ((X,e;))7; are uncorrelated real-valued random variables with mean {u,e;) and

variances A;.

Note that the above is an extension of the principal components decomposition of multiva-
riate random variables to the context of Hilbertian random variables. Those familiar with
the theory of stochastic processes will also note the similarity to the Karhunen-Loéve de-
composition (as given in [12] Theorem 7.3.5). Using this decomposition we can derive the

distribution of the norm of a mean-zero Gaussian random variable, which we will use later.

Theorem 4.1.15 (Distribution of the norm of Hilbertian Gaussian). Let X be a Hilbertian
random variable with X ~ N(y, #") on the space H with norm ||-||. Then letting ()\;)7Z, be
the eigenvalues of # and (Z,)nen be a sequence of iid. standard normal random variables,

we get
ve
D
X — ull? = D02
i=1
Proof.
Using the previous theorem, we can use the eigen-decomposition of J# and write
o0
X—p= Z<X — 1, e;e;.
j=1
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Thus taking norms on either side and recalling Parseval’s identity, we get using simple pro-
perties of the norm and the fact that (X — p,e;) ~ N(0,\;)

2 oL - 20
2
X — ul* = = DX = mees|* = Y NZE,
j=1 j=1

oo
Z<X — M, €j>€j
j=1

as desired. O

This will be applied later when constructing test statistics.

Having defined the mean and covariance of a single Hilbertian random variable, it is natural
when we need to consider questions of independence and conditional independence to ask how
two Hilbertian random variables behave together. Letting X; and X» denote two Hilbertian
random variables with values in separable Hilbert spaces H1 and Hs respectively, we can once
again consider the implications of Theorem and settle for characterizing how (X1, hi)
and (Xa, ho)s behave for every hy € H; and hy € Hy. Given two univariate real-valued
random variables, we often settle for calculating the covariance of the variables as a measure
of correlation. We could now repeat many of the arguments given above the definition of the
covariance operator to get a bilinear form, that takes a functional on H; and a functional on
‘Ho and returns the covariance of the functionals applied to the respective random variables.

These arguments would lead us to define a cross-covariance operator as below.

Definition 4.1.16 (Cross-covariance operator). Let X; and X3 be Hilbertian random vari-
ables on H; and Hs respectively. Assume that both X; and X5 have finite second moment
and let p1 and ps be the means of X; and X, respectively. We define the cross-covariance

operator of X; and X5 as the Bochner integral

Cov(X.Y) i= B((Xa ~ pz) Oz (X1 = ) = | (Xa = 12) @2 (X1 = ) dP.
Q
Note that the integral above is well-defined since the outer product is an element of B i g(Ha, H1)
which is a separable Hilbert space. Let us prove some properties of the cross-covariance ope-

rator.

Theorem 4.1.17 (Properties of cross-covariance operators). Let X; and X5 be Hilbertian
random variables on H; and H, with inner products {-,-)1 and {,-)o respectively. Assume
that both X; and X, have finite second moment and let p; and py be the means, J#;
and % be the covariances and .#i5 the cross-covariance of X; and X, respectively, i.e.
12 = Cov(X1, Xs). Let further hy € H; and hs € Hy. Then

1. {(Hi2ha, hiy1 = Cov({X1, hi)1,{X2, ha)2).

2. |{Haha, haidi| < A/{Hihi, hiyn/{Hahz, ha).
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3. S =S = E((X1 — 1) O1 (X2 — p2)).
4. Ho = FE(X2©O2 X1) — ph2 O2 1.

5. If X1 Ao XQ then f%/lz = 0.

Proof.
The first four claims follow from arguments similar to Theorem The final claim can
be seen to hold by applying Theorem O

As with real-valued random variables, we will be interested in sequences of Hilbertian random
variables and in particular their convergence properties. To that end let us define the modes
of convergence for Hilbertian random variables.

Definition 4.1.18 (Modes of convergence for Hilbertian random variables). Let (X,,)nen
be a sequence of Hilbertian random variables on A and let X be another Hilbertian random
variable. Let also ||-|| denote the norm on H. Then

1. If P(lim, . X, = X) = 1, we say that X,, converges to X almost surely and write
X, 3 X.

2. If for any € > 0, we have lim,,_,, P(||X,, — X|| = ¢) = 0, we say that X,, converges to
X in probability and write X, £ x.

3. If for any continuous, bounded function f : H — R,
E(f(Xn)) —» E(f(X)), asn— o,

we say that X, converges in distribution to X and write X, ZX.

These are straight-forward generalizations of the usual definitions for real-valued random
variables. We will omit a full disposition of these modes of convergence for Hilbertian random
variables and simply note, that we have almost all the results we’re used to for real random
variables. In particular both the continuous mapping theorem and Slutsky’s theorem still
hold (for proofs see for instance Theorem 2.7 and 3.1 in [2]).

Theorem 4.1.19 (Continuous mapping theorem). Let (X, )nen be a sequence of Hilbertian
random variables on H and let X be another Hilbertian random variable. Assume that
X, I X. Assume further A is another Hilbert space and that f : % — H is a continuous
mapping. Then f(X,,) A F(X).
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Theorem 4.1.20 (Slutsky’s theorem). Let (Xp,)nen and (Y3,)nen be sequences of Hilbertian
random variables with values in H and let X be another Hilbertian random variable on the
space and h € H. Assume that X,, B X and Y, L h. Then

X, +Y, 3 X +h.

We end the section with two generalizations of the classical large sample results: the Law of
Large Numbers and the Central Limit Theorem as seen in [12].

Theorem 4.1.21 (Law of Large Numbers in Hilbert spaces). Let (X, )nen be a sequence
of Hilbertian random variables. Assume that the sequence is independent and identically
distributed and assume further that the common distribution has finite first moment with

mean . Then

S|

n
Z Xz a;s). M.
1=1

Theorem 4.1.22 (Central Limit Theorem in Hilbert spaces). Let (X,,).en be a sequence
of Hilbertian random variables. Assume that the sequence is independent and identically
distributed and assume further that the common distribution has mean zero and finite second

moment. Then
1 n D
—— Z X,‘ i C;'7
Vn i=1

where G is a Gaussian Hilbertian random variable with mean zero and covariance operator
Cov(X) = E(X ®©X).

4.2 CONDITIONAL EXPECTATION FOR HILBERTIAN RANDOM
VARIABLES

In this section we develop and define the theory of conditional expectations for Hilbertian

random variables.

There are several equivalent ways of defining and proving the existence of conditional ex-
pectations for integrable random variables, real-valued or Hilbertian. Most approaches use
the Radon-Nikodym theorem to prove existence of the conditional expectation, while others
will apply Hilbert space projection techniques. We will apply a more direct approach em-
ploying the theory of Bochner integration directly and utilizing that existence of real-valued

conditional expectations is already established.

Let us first define the conditional expectation for a Hilbertian random variable.
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Definition 4.2.1 (Conditional expectation of Hilbertian random variable). Let X be a
Hilbertian random variable defined on (2, F, P) with values in H. Let D € F be another
o-algebra. Assume further that X has finite first moment. A conditional expectation of X

given D is a Hilbertian random variable, Y, satisfying

1. Y is D-measurable and Bochner integrable.

2. For any D € D:

J XdP=J Y dP.
D D

In the following proof we will employ that the set of equivalence classes of Bochner integrable

functions on a measure space form a Banach space.

Theorem 4.2.2 (L' space for Bochner integrals). Let (X, E,u) be a measure space, H a
Hilbert space and denote by £!(X,E, u; H) the set of all Bochner integrable functions from
X to H with the Borel o-algebra. Define L'(X,E, u;H) as the set of equivalence classes of
LY(X,E, u; H) where two functions are in the same equivalence class, if they are equal except

possibly on a null set.

LY(X,E, u; H) forms a Banach space, i.e. it is a vector space under pointwise addition and
scalar multiplication that is complete with respect to the norm

1o =f 1]l du
X
for f e LY(X,E, u; H).

For a proof see [11] Theorem 3.7.7. We now prove that the conditional expectation of a

Hilbertian random variable exists and is unique.

Theorem 4.2.3. The conditional expectation of a Hilbertian random variable as defined in
Definition [£.2.T] exists and is almost surely unique. We can therefore refer to the conditional

expectation and denote the conditional expectation of X given D by F(X | D).

Proof.
We follow the proof given in [22] Theorem 2.1. Throughout we denote the norm on #H by
|-Il3 and the norm on L'(Q,F, P;H) by ||| z:-

We have assumed that X has finite first moment, i.e. it is integrable and thus by definition
there exists a sequence of simple functions (X, )neny converging pointwise to X and further

lim J [ X5 — X[l3 dP = 0.
Q

n—%L
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This amounts to X,, converging to X in L! norm as given in Theorem

Each X,, can be written

k
w) = Y 1a,(w)h
i=1

for Aq,... A, eFand hq,...h, € H. We first show that

k
E(X, |D) =) E(la, | D)h;,
=1

where each of the E(

The proposed expression is obviously DD-measurable, so we show the integral property and

) are real-valued conditional expectations and thus well-defined.

get for D € D by simple properties of the Bochner integral and the definition of E(14, | D)

that i N
J E(Xn|ID))dP=Z ]D))dPhi=ZJ 1AidPhi=JXndP.
D i=1 i=1vD

Similar calculations will show that if X,, and X,, are simple functions, we have

E(Xn_Xm |D) :E(Xn |]D))_E(Xm |]D))

We also have a triangle inequality, since

k
[E(Xn | D)3 = IIZE (L, | DYhillae < D E(La, [ D)[hillne = E(| Xl | D).
1=1

i=1
Using the results above, we get

|E(X, | D) = E(Xp | D)z = |[E(Xn — X | D)2 < E[E(| X, — Xon 3¢ | D)]
= E(”Xn - Xm”H) = HXn - XWL”L1

where the last term goes to zero as n,m — o by construction, thus E(X,, | D) is a Cauchy
sequence in L!(Q, D, P;H). The space is complete by Theorem so E(X,, | D) converges
and we define the limit to be the conditional expectation of X given D, i.e. E(X | D) :=
lim,, o, E(X,, | D). The limit is almost surely unique and measurable with respect to D by

construction, so we just need to show the integral property.

For this note that for D € D, we have by the triangle inequality

J,xor=], o imar

JXdP—f E(Xn|}D>)dPH +
D D H

X, | ]D))dP—J E(X | ]D))dPH
D H
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Note that the second integral in the first term is equal to SD X, dP, since each X, is simple
and we showed already that conditional expectations exist for simple functions. Therefore
the first term becomes the L' norm of X — X, which goes to 0 by construction. The
second term goes to zero by definition of E(X | D) — the term is exactly the L' norm of
E(X |D)—-E(X, |D). O

The definition of a conditional expectation is identical to the one given for real-valued random
variables and thus it is not surprising that many of the same properties apply. We get most
of the properties except the ones given by multiplication or monotonicity since unlike R, H
has no multiplication and is not ordered.

Theorem 4.2.4 (Properties of Hilbertian conditional expectation). Let X be a Hilbertian
random variable defined on (2, F, P) with values in H. Let D € F be another o-algebra and
assume the first moment of X is finite. Then

1. EJE(X | D)| < E|1X]

2. If D € E are sub-o-algebras of F, we have F(X | D) = E(E(X |D) |E) = E(E(X |E) | D).
3. If X is D-measurable, then E(X | D) = X.

4. If X is independent of D, then E(X | D) = E(X).

5. If H is another Hilbert space and </ € B(H,H) then E(o/X | D) = o (E(X | D)).

6. For any he H, E(X,hy | D) =<(E(X | D), h)

7. If H is another Hilbert space and <7 is random variable with values in B(#, H) then
for any h e H, E(«/h | D) = E(</ | D)h.

8. If (X,)nen is a sequence of integrable Hilbertian random variables, then F (27'::1 X, | ]D))
Yo B (Xn | D).
Proof.
Most of these proofs proceed in the same manner. We will illustrate the idea by proving
5. We need to show that «/(E(X | D)) satisfies the requirements of being the conditional
expectation of &/ X given . Measurability follows trivially, since 7 is continuous and pre-

images under continuous mappings of Borel sets are again Borel. Integrability follows by

E(l« (E(X [ D))[lz) < E(#[[[E(X [ D))
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since &7 is bounded and E(X | D) is integrable. The conditional expectation and &/ X agree
on sets in D by Theorem since

JDMXszdeXszﬂJDE(X | ]D))szstzf’(E(X | D)) dP

thus proving the result.

The remaining results go through the same steps; arguing for D-measurability using well-
known measurability arguments and then applying properties of the Bochner integral to show
th integral property. O

Note that the first result proves that the conditional expectation is a contraction, i.e. taking
a conditional expectation of a random variable always reduces the norm. This further implies
that if the original variable is integrable, so is the conditional expectation, thus we can omit
showing integrability, when proving that a random variable is a conditional expectation.

A useful property of the real-valued conditional expectation is "pulling out what is known",
i.e. the fact that if X is D-measurable and E|XY| < 00, we have E(XY | D) = XE(Y | D). As
we already noted, there is no multiplication on H, we do however have scalar multiplication
and both an inner and an outer product, that do satisfy this "pulling out what is known"-

property, as we shall see below.

Theorem 4.2.5 ("Pulling out what is known"). Let X and Y be Hilbertian random variables
defined on (Q,F, P) with values in H, let Z be a Hilbertian random variable on the same
probability space but with values in #H and let W be a real-valued random variable on the
same probability space. Assume that all the aforementioned random variables have first
moment. Let D be a sub-c-algebra of F and denote the inner product of H by {:,-» and the
norms of # and H by ||-||3 and |-l respectively. Then

1. E(W-X |D)=W - E(X | D) if W is D-measurable and E||W - X || < co.

2. EW-X |D)=EW |D)-X if X is D-measurable and E||W - X||¢ < oo.

3. E(X,Y) | D) =<(X,E(Y | D)) if X is D-measurable and F (|| X ||»||Y]|%) < co.

4. E(XOn Z | D) =X Ox E(Z | D) if X is D-measurable and E (|| X||»[|Z]z) < oo.

5. E(Z®z X | D) = E(Z | D) ©f X if X is D-measurable and E (||.X|[|%|Z]|z) < o.

Proof.

We proceed to show that the proposed conditional expectations satisfy the requirements
given in the definition, i.e. D-measurability and integrals agreeing on all D-sets. Throughout
the following let (e;);~; be an orthonormal basis for .
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For the first claim note that trivially W-E(X |D) is D-measurable. To prove that the integral
property holds, note first that for every D € D

o8] o8]
JW-XszJ Z<W-X,ei>-eidP=ZJ, W{(X, e;>dP - e,
D D ;-1 i=1vD

where we have expanded X using it’s Fourier expansion and applied Theorem [3.3.13] Each
of the real-valued random variables W{X| ¢;) has finite first moment by the moment assump-
tion on W - X and Cauchy-Schwarz, thus there exists a real-valued conditional expectation
E(W({X,e;> | D) whose integrals agree with W{(X,e;) on D-sets. Furthermore, W is D-

measurable and can thus be pulled outside the integral and we get

o) o
fW-XdP:Zf W<X,ei>dP-ei=Zf WE(X, ey | D)dP - e
D i=1YD i=1vD

=JDW-Z<E(X | D),e,»}-eidP:fDW-E(X | D)dP

i=1
again by the Fourier expansion, Theorem [3.3.13]and by the way that conditional expectations
interact with the inner product. This proves the claim.

The second claim can be proven in a manner analogous to the first claim.

For the third claim note that (X, E(Y | D)) is trivially measurable if the inner product is
measurable, which follows if it is continuous. This can be seen by bilinearity of the inner
product, Cauchy-Schwarz and the triangle inequality, since letting x,, — x and y,, — y as

n — 00, we get

|<$n7yn>_<x7y>| = |<$n,yn>—<5L’n,y>+<$n,y>—<$,y>|
< Kons yn — | + Kon — 29| < llznllllyn —yll + [l2n — 2[lllyll — 0,

proving continuity. To show that the integrals agree on D-sets, we proceed as above and get

| xvyap- ZJD<X eXY. ey dP

by the Fourier expansion of the inner product and Theorem We can note that the
integrand (X, e; XY, e;» has finite first moment by Cauchy-Schwarz and the assumption of
first moment of || X||#||Y||7. Thus there exists a conditional expectation E({X,e;XY,¢e;> | D)
that agrees with (X, e; (Y, e;» on D-sets. Furthermore, we can pull out (X, e;) since X is
assumed D-measurable, so any measurable function of X is also D-measurable. Therefore we
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get
J’D<X, Y)dP = ; J’D<X, eYE(Y, e | D)dP

= JD i=21<X ,eiXE(Y | D),e;)ydP = JD<X, E(Y | D))dP

again using the Fourier expansion of the inner product, Theorem [3.3.13 and the way condi-

tional expectations and inner products interact. This proves the claim.

For the fourth claim note as above that if the outer product is continuous, then X ®y Z
is trivially D-measurable. An argument analogous to the one for the previous claim can
show that the outer product is continuous, this time using that we can explicitly calculate
the Hilbert-Schmidt norm of the outer product as the product of norms of the arguments
instead of Cauchy-Schwarz.

We will show that the integrals agree by showing that the resulting operator performs the
same operation on all h € H. For any D € D we get by Theorem |3.3.15

(LX@H ZdP) h= fD(X On Z)hdP = Lp<h’X>ZdP'

The integrand <(h, X)Z has finite first moment by Cauchy-Schwarz and the assumption of
first moment of || X|||Z]|;;. Thus there exists a conditional expectation E({h, X)Z | D)
that agrees with (h, X)Z on D-sets. Furthermore, we can pull out (h, X') by the first claim,
since X is D-measurable. Thus we get

JD<h, X>ZdP = J’D<h, XYE(Z | D)dP = UD X Oy E(Z | D) dP) h

by Theorem [3.3.15| as desired.

The fifth claim can be proven in a manner analogous to the fourth claim. O

We will almost solely be interested in conditional expectations with respect to other random
variables, which we will define as below. Note that we do not require the other random
variable to be real-valued or even Hilbertian.

Definition 4.2.6 (Hilbertian conditional expectation given random variable). Let X be a
Hilbertian random variable defined on (2, F, P) with values in H. Let Y be another random
variable defined on the same probability space with values in the measure space (J,E).
Assume that X has first moment. Then we define the conditional expectation of X given Y
as

EX|Y):=EX |a))
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where o(Y) is the smallest o-algebra making Y F-E-measurable, which we can write explicitly
as
o(Y)={Y~YE) | EeE}.

A Hilbertian random variable X being measurable with respect to the o-algebra generated
by another random variable Y implies that X can be written as a measurable function of Y,
as we shall see below.

Theorem 4.2.7 (Doob-Dynkin lemma for Hilbertian random variables). Let X be a Hil-
bertian random variable defined on (2, F, P) with values in H and let Y be another random
variables on the same probability space with values in the measurable space (Y, E). Then X
is 0(Y) measurable if and only if there exists a E — B(H)-measurable function ¢ : Y — H so
that

X =¢oY.

Proof.
Assuming that X = ¢ oY, it is obvious that X is ¢(Y) measurable.

For the other implication assume that X is o(Y) measurable and consider the class of Hil-

bertian random variables given by

F ={o(Y) | ¢ is E — B(H)-measurable}.
If we can show that

1. Zl7Z2 e F implies that Z1 + Zg eF y
2. (Zp)nen € F and Z,, — Z as n — oo implies that Z € F |
3. 1p-heFforall Deo(Y)and all h e H,

then we will be done, since any o(Y)-measurable random variable can be approximated by
a sequence of o(Y)-measurable simple random variables.

Assume that 71,25 € F,i.e. Z3 = $1(Y) and Zy = ¢2(Y'), then we can write

Z1+ Zy = $1(Y) + ¢2(Y) = (¢1 + ¢2)(Y),
so since sums of measurable mappings are measurable, we have that Z; + Z5 € F.

Assume now that (Z,)neny € F, ie. each Z,, = ¢,(Y), and Z,, — Z as n — oc. Then we
note that F' = (lim,,_, ¢, exists) is in E, since each ¢, is measurable and we can write F'
using countable intersections and unions. Defining ¢ = lim,_,,.(1p¢,), we can write

Z = lim Z, = lim ¢,(Y) = lim (Lrén)(Y) = ¢(Y),

n—aoo
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thus proving that F is closed.

Finally each Z = 1p - h for some D € ¢(Y) and h € H is in F, since D € o(Y) implies that
there exists a set F € E such that D = (Y € E) and thus

Z=1p-h=1g(Y)-h,

and therefore if ¢(y) = 1g(y) - h is E — B(H)-measurable, we will be done. This is obvious
since the pre-image of any set E € E under ¢ will either be {h} or the empty set, both of
which are elements of the Borel o-algebra. O

For conditional expectations this leads to the following definition.

Definition 4.2.8 (Conditional expectation given value of variable). Let X be a Hilbertian
random variable defined on (2, F, P) with values in H and let Y be another random variables
on the same probability space with values in the measure space (), E). Assume that X has
first moment. The conditional expectation E(X | Y) then exists and is o(Y)-measurable by
construction, so by Theorem [£.2.7] there exists a measurable function ¢ : Y — H. We define
E(X |Y =y) := ¢(y) and call this the conditional expectation of X givenY = y.

As a natural generalization of the conditional covariance for real-valued random variables,

we can define a conditional cross-covariance as below.

Definition 4.2.9 (Conditional cross-covariance). Let X and Y be Hilbertian random varia-
bles defined on a common probability space (2, F, P) with values in Hx and Hy respectively.
Let D € F be another o-algebra. Assume that X and Y have finite second moment. We

define the conditional cross-covariance operator of X and Y given D by

Cov(X,Y |D)=E(Y—EY |D) Oy (X —-—EX |D))|D).

We can rewrite this in a similar way as done for the cross-covariance.

Theorem 4.2.10 (Alternative expression for the conditional cross-covariance). Let X and YV
be Hilbertian random variables defined on a common probability space (2, F, P) with values
in Hx and Hy respectively. Let D € F be another o-algebra. Assume that X and Y have
second moment. We can write the conditional cross-covariance as

Cov(X,) Y | D)=E(Y Oy X |D)—E(Y | D) Oy E(X | D)
Proof.
Using linearity of the outer product in the definition of the conditional cross-covariance yields

Cov(X,Y | D)= E(Y Oy X | D) — E(Y Oy E(X | D) | D)
—E(E(Y |D)®y X | D)+ E(E(Y | D) Oy E(X | D) | D).
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The final term is equal to E(Y | D)@y E(X | D) since the outer product is continuous and thus
measurable and therefore preserves the D-measurability of the two conditional expectations.
If we can show that both of the middle terms equal —E(Y | D) Oy E(X | D), we will be
done. This follows immediately from Theorem [£.2.5] O

We will later employ this conditional cross-covariance as the basis of the Hilbertian GCM,

since it shares the following crucial property with the real-valued version.

Theorem 4.2.11 (Conditional cross-covariance of conditionally independent variables). Let
X and Y be Hilbertian random variables defined on a common probability space (2, F, P)
with values in Hx and Hy respectively. Let D € F be another o-algebra. Assume that X
and Y have second moment. Then if X 1 Y | D, we have Cov(X,Y | D) = 0.

Proof.

We show that E(Y Oy X | D) = E(Y | D) ©y E(X | D) by showing that they perform the
same operation on all h € Hy. Taking h € Hy and an orthonormal basis (e, )nen, We note
that

E(Y Oy X | D)h = E((Y Oy X)h | D) = E((h, Y)X | D)
=B <Z<h YX(X e | D) = 3} BUA, VXX e | Dles

by Theorem [£.2.40 We know that functions of random variables inherit conditional inde-
pendence by Theorem so {(X,e;» and (h,Y) are conditionally independent for all
1 € N. They are also integrable by assumption so their conditional expectation factorizes by
Theorem Therefore we get

ST, YXX, ¢33 | D)er = B, YY | D) S BCX, e | D)es
i=1 i=1
— (b, E(Y | D))E <Z<X, edes | ]D)) — (E(Y | D) Oy E(X | D)k

by various properties of the conditional expectation, thus proving that the conditional cross-

covariance is zero as desired. O

Recall that to construct the univariate GCM, we saw that the product of the residuals of
conditionally independent random variables had mean zero. We will now show that the same
is true for the residuals of Hilbertian random variables under the outer product.

Theorem 4.2.12 (Product of residuals of conditionally independent Hilbertian variables is
zero). Let X and Y be Hilbertian random variables defined on a common probability space
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(Q,F, P) with values in Hx and Hy respectively. Let D € F be another o-algebra. Assume
that X and Y have second moment.

Define the residuals e = X — E(X | D) and £ =Y — E(Y | D).
Then if X LY | D, we have E(£ Oy ¢) = 0.

Proof.
Note that by the tower property, it is sufficient to show that F({ @y € | D) = 0. Now by

definition of the conditional cross-covariance and Theorem [£.2.11] we are done, since

E(Oye|D)=E(Y - EY |D)]Oy [X - EX | D)] | D) = Cov(X,Y | D).

4.3 HILBERTIAN ESTIMATION OF MOMENTS AND LINEAR MODELS

In this section we will discuss estimation of means and covariance for Hilbertian random
variables. Then we will generalize the canonical linear model on Euclidean spaces to linear
models for Hilbertian random variables. This will include the usual linear models as a special
case. We will describe the necessary theoretical assumptions to ensure that both the model
and estimation is well-defined, how to estimate in this framework and we will give a bound

on the mean-squared prediction error using this estimator.

In the context of statistics it is of great importance whether we can estimate various pro-
perties of a distribution consistently. We will throughout assume that we are given n i.i.d
observations of some Hilbertian random variable X. It is seen immediately from the law
of large numbers that we can estimate the mean of X consistently, assuming it exists. For
covariance operators the question is more subtle. Recall that the covariance was defined
as an integral over the space of Hilbert-Schmidt operators, which is a Hilbert space, so we
could once again apply the law of large numbers to note that covariances are estimated con-
sistently. By this we mean that the estimates converge to the true covariance operator in
Hilbert-Schmidt norm.

However we also noted that covariance operators are trace-class operators and a natural que-
stion becomes whether the estimates converge in trace norm to the true covariance operator.
This is not at all obvious and follows from another version of the law of large numbers in
Banach spaces. We will not go into the technical details of how to work with random varia-
bles on Banach spaces but much of the theory developed in the previous sections still holds,
in particular the modes of convergence given in Definition also hold in Banach spaces.
For more on random variables on Banach Spaces see [16] or [28].
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Theorem 4.3.1 (Law of Large Numbers in Banach spaces). Let (X, )nen be a sequence of
random variables with values in a Banach space . Assume that they are independent and
identically distributed and that they have first moment. Denote their common mean by pu.
Then

For a proof of |4.3.1] see [3] Theorem 2.4. Using this theorem we can get that covariance
estimation is also consistent in trace norm.

Corollary 4.3.2 (Consistency of covariance estimation). Let (X, )nen be an i.i.d. sequence
of Hilbertian random variables with second moment. Let % denote the covariance operator
of the common distribution and define the empirical estimate of the covariance operator as
~ n
== X;0X;.
i=1
Then
1%, — €|lrr “3 0.

We will now proceed to define a regression method for general Hilbert spaces. We follow
the exposition given in [6], that is a generalization of the method given in [29]. This is a
generalization of the finite-dimensional linear models and also of the functional linear model
with scalar response given in Theorem [2.3.4] The possible infinite-dimensional nature of
these spaces makes estimation a tricky problem and we will not go into the full details here.
We give an account of this method since we will apply it in the empirical investigation of the

upcoming conditional independence test on Hilbert spaces.

Definition 4.3.3 (Hilbertian linear model). Let X and Y be Hilbertian random variables
with values in Hx and Hy respectively and let . € B(Hx,Hy). Let furthermore € be a
Hilbertian random variable with values in Hy and € 1L X. Assume that

Y =9X +e.

The statistical model with sample space Hx x Hy, o-algebra B(Hx x Hy) and set of dis-
tributions satisfying the relation above is the Hilbertian linear model.

The above assumptions are the minimal assumptions required for defining the model but we
will need to impose further assumptions to construct an estimate of . and further still when

considering the mean square prediction error of a new observation.

From now on we assume that
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1. X and Y are centered, i.e. they have mean zero.
2. ¢ has finite second moment and covariance operator I'c = Cov(e).
3. < is a Hilbert-Schmidt operator.

4. X has moment of all orders and has injective covariance operator I' = Cov(X) with
convex eigenvalues from some point on, i.e. if (\,,),en is the sequence of eigenvalues of
I', the function that for j € N maps j to A;, continuously interpolated on R*, is convex
from some point on, i.e. there exists some N € N so that the function is continuous for
x> N.

5. If we let (ej)jen denote a basis of eigenvectors of I', we assume that there exists a
constant b so that for all £, j € N we have

B ef) < SH2B((X e))?)

These assumptions are required to ensure that the model is identifiable (injectivity of I') and
that estimation is well-behaved. For the full proofs and details regarding these assumptions,
see [6]. If X is a Gaussian on Hyx with injective covariance, the assumptions on I" and X
will be fulfilled.

We assume that we are given n ii.d. samples from the model, (X;,Y;)1<i<n and attempt
to estimate . (X*) where X* is a new independent observation from the model. Note that
in practice it matters whether we’re interested in . or (X *) when tuning the estimation
process. More regularization is needed when estimating . than when estimating . (X™*)

for reasons discussed in [4].

Definition 4.3.4 (Estimation in the Hilbertian linear model). Continuing from Definition

433 we define
A = Cov(Y, X)

and empirical counterparts

I, =

S|

iXiQXXia and An:%iXiQX}/i-
i=1 i=1

Then letting (k,)nen be a sequence of natural numbers diverging and (S\j)jeN and (€;),en be

the estimated eigenvalues and -vectors of I';,, we define
L= 2 A7 (e; Ox ¢))

and the estimator of .
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To motivate the estimator given above, consider that by the method of moments, we have

the equation
E(XoxY)=EX0ox X))+ E(X Ox ¢).

The second term on the right hand side is zero, since we have assumed that X 1 e. The first
term becomes E(.#T) by linearity of ., so in total we get

A =9T.

If I was invertible, we would simply multiply either side by the inverse and have an estimator
but T" is a covariance operator and thus compact and therefore has no inverse. The usage of

I'f is a way around this problem, that is common in inverse problems.

The following result is a combination of Theorem 2 and parts of the proof of Theorem 9 in
[6].

Theorem 4.3.5 (Prediction error in Hilbertian linear model). Consider the setup given in
Definition and Definition Letting (A;, €;)jen denote the eigenvalues and -vectors
of ', we define

Ve = sglz{j log j[|-7 (€;)lIn/A;}-
J=

Assume that (k, logk,)?/n — 0 and assume further that there exists some N € N so that

for all n > N, we have
< (ky log kn)?

Ve S —
n
then
VB[ 7 (X*) = Z (X)) > 0.
Proof.

Theorem 2 in [6] states that for any k, we have

—~ Ek = k2 Oy (klogk)?
VE||.Zp (X ) =7 (X*)|? < 02 —=4/n E Aj||f5ﬂ(ej)||2+01||5ﬂ||HSAk—+—2 (Flogh)” )
j=k+1

where 02 = ||I.||rr and C; and Cs are constants that do not depend on ., k or n. It

2 =
is obvious from the assumption that (k, logk,)?/n — 0 that the fourth term goes to zero.
Noting that this also implies (ky,, log k,,)/s/n — 0, which in turn implies k,,/+/n — 0, the first
term also goes to zero. The third term goes to zero by noting that Ag, &, — 0, since ();) en

are summable and again by the previous argument.
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The second term is the tricky one to deal with and arguments are given in the proof of
we have that

n?

Theorem 9 in [6], that show that using the assumption on -
n o<
7 2 MlLEP =0,
J=k+1
which implies that the second term also goes to zero, proving the result. O
The assumptions in Theorem are mainly there to ensure that (k,logk,)?/n goes to

zero at the correct rate. We will apply this theorem in the next chapter where we extend
the GCM to Hilbert spaces.
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In this chapter we extend the GCM to data with values in Hilbert spaces.

5.1 DEFINITION AND PROPERTIES OF THE GHSCM

We have now developed the tools required to extend the GCM to Hilbertian random variables.
We will consider X and Y Hilbertian random variables defined on (Q,F, P) with values in
two Hilbert spaces Hx and Hy of possibly infinite dimension. We further have a random
variable Z defined on the same probability space with values in a space Z that is only used
for prediction i.e. conditioning. The requirements on Z are identical to the univariate GCM;
that we can construct a sub-o-algebra of F that we can use for conditioning and that we
have a regression method with a suitable rate of convergence when regressing X on Z and
Y on Z. The regression requirement will typically be the limiting one but if we assume that
Z is a third Hilbert space, we have the regression methods explained in Section 3] We will

thus simply assume that Z is in a measurable space (Z,G).

The Generalised Hilbert Space Covariance Measure (GHSCM) retains the gist of the GCM
for univariate random variables but is considerably more complicated due to the fact that
we cannot normalize the asymptotic limit distribution like in the univariate case. In the
univariate case we considered a covariance estimator of residuals (which is an operator when
R is viewed as a Hilbert space) that we argued had a limiting normal distribution with some
variance in Theorem [2.3.2] The test-statistic was constructed to whiten the asymptotic
distribution so that the Gaussian limit was always standard. On an infinite dimensional

Hilbert space this is impossible, since there is no standard Gaussian in infinite dimensions.

We will proceed in a manner similar to the univariate case but without normalization the
asymptotic distribution of our test statistic becomes quite different.

Definition 5.1.1 (GHSCM test statistic). Let X and Y be random variables with values
in two Hilbert spaces Hx and Hy with inner products <-,-)x and {-,-)y and norms ||| x
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and ||-||y respectively. Let Z be a random variable with values in measurable space (Z,G).
Consider the statistical model of all joint distributions Hx x Hy x Z, i.e.

P = {v probability measure on (Hx x Hy x Z,B(Hx) @ B(Hy)® G}.

Consider the hypothesis X 1 Y | Z with corresponding subset of probability measures Py.

For every v € P, we can write

X:EV(X | Z)+X_EV(X | Z)v

fu(Z) ey

ie. fu(z) = E,(X | Z = 2) and similarly

Y=E, (Y |2)+Y -E,(Y | Z).
—_—

9v(2) &

Let (x,y,2)™ € (H? x Z)" be a sample of size n from the model and let f(") and g denote
estimates of f and g based on the sample. For ¢ = 1,...,n define

~,

" = (i = §"(=)) O (e = F™ (=)

and define )

b

T‘
HS

1 )

where ||-||gs is the Hilbert-Schmidt norm on B g (Hy, Hx). This is the Generalised Hilbert
Space Covariance Measure (GHSCM) test statistic.

Theorem 5.1.2 (Asymptotic distribution of GHSCM test statistic). Continuing from Defi-
nition [5.1.1} we define for each v € P

wl(2) = By (leo? 1 Z=2), v2) = By (J6)2 1 Z = 2).

We further define the mean-squared prediction error and weighted mean-squared prediction

error for f
;_1y OOV o _ 1y OO
ML, = = S ||f )= FG|T and 2L, = = 3 [z = )| o),
i=1 i=1
and
o _1x (| 70 _ LY YN &
MY, = =3 oz =3 G| and 3z, = = 37 |lgu(z) =) )| (),

i=1 i=1
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for g.

Assume that for each v € Po, nMJ, MJ,, Lo, M, o, Mg, L 0and0 < E, (lew2N1€11%) <
oo then for every v € Py, we have

»
53 Aw?
i=1

where (Wp,)nen is an ii.d sequence of standard normal variables and (A;);~; is the non-

increasing sequence of eigenvalues for Cov(€ Oy ¢).

Proof.
In the following we suppress dependence on v € Py, since all the calculations are identical

for all measures.

Note that if we can show that ﬁ Sy %i(") converges to a Gaussian with mean zero and
covariance operator Cov({ @y ¢), we will be done according to Theorem [4.1.15

By arguments similar to the univariate GCM proof and linearity of the outer product, we
get

L gm_ LY S (o(2) — 500 (5 T
G 2P = 5 Loy et g 300 ~ 3 O ()~ F0e0)
~ s

Tg —f<">(Zi))+111iZ;<g<zi) —§"(2) Oy =i

Since v € Py, Theorem yields that the sequence of Hilbert-Schmidt operators (§; Oy
€;)ien has mean zero and by assumption they are i.i.d with finite variance, thus the Hilbertian
CLT gives that U, z G, where G is a Gaussian with mean zero and covariance operator
equal to the covariance of £ ®y e. By Slutsky’s theorem if a,, b, and ¢, all converge to
0 in probability, we will be done. We will establish this by looking at the square of the
Hilbert-Schmidt norm of the sequences, since convergence of the squared norms to 0 implies

convergence of the sequences to 0.

Note that multiplicativity and sub-additivity of norms, Theorem and Cauchy-Schwarz,
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we get
2
IIanII%s=| Z =" (@) Oy (f(z:) = T (z)
HS
< %ZH(g(z — (=) Oy (f(z) = FP ) s
== Zl\g () = 3" IR (=) = F )k
< 5Z|\g(zi) (=) ”YZ” (@) = nMIME 50,

by assumption. To establish that ||b,||%¢ goes to 0, we will apply Lemma and show
that the conditional expectation given X" and Z(™) goes to zero, which will imply the
desired result. We get by using the relationship between the Hilbert-Schmidt norm and
inner product and by linearity of both that

2

E(|[ballfs | X, 2 Z & Oy (f — f) (2)) | X, Z(
HS
B TILJ_“;E (¢ Oy () = F=0).8 O (F(25) = Fz)ms | X0, 20)

3|\|'—‘
NgE

<
Il

-
~
Il

—

B ((Fz) = T (200, £ (23) = T (3 xedEan 0w | X, 209)

~,

)= P ), () = O E)xE (v | X0, 20),

<
Il

—
~
Il

—_

I
3 |-
1=
D=
P
~
5

where the second to last equality to due to Theorem and the last equality holds since
the terms involving f(z;) — f(”)(zz) are measurable wrt. the o-algebra generated by X (™)
and Z(" <§l,fj> only depends on Z; and Z; of the conditioning variables, so we can omit
the remaining variables form the conditioning expression.

For i # j, by using that E(Y; | Z;) = E(Y; | Z;, Z;) since Z; is independent of (Y;, Z;) and
Theorem we get

B (v | XM, 20) = B Yy = Vi BOY; | )y
—(BY: | Z). Yy +(E(Y: | 2).E(Y; | Z)y | 2 2]
= EQYi, Yy | Zi, Z;) —<E(Y: | Zi, Z;), E(Y; | Zi, Z;))v-

We will show that this is zero, by first recalling that by assumption (Y;, Z;) 1L (Y}, Z;), so
applying weak union and symmetry from Theorem [2.1.9] we get Y; L Y; | (Z;,Z;). Take
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now some orthonormal basis for Hy, (ex)ren and note that
o0
EQYi, Yy | Zis Zj) <Z<Ym€k>Y< ey | Zi»Zj> = Z E (Y, erpyYj,er)y | Zi, Zj) -
k=1

Note that for all k, {Y;,ex)y and (Yj,eg)y are conditionally independent given (Z;, Z;), so
by Theorem [2.1.12] the conditional expectation factorizes and we get

N

Z (Y, erpy Yy, er)y | Zi, Z;) Z (Yisewyy | Zi, Z) EYG ey | Zis Z5)

=1 k=1

= 2<E(Yi | Zis Z), enpy{E(Yj | Zi, Zj), enpy = E(Y: | Zi, Z5), E(Y; | Zi, Z5))v s

o

by various rules for manipulating the conditional expectation.

We can thus omit all terms from the sum where ¢ # j and therefore

~f P
E(|lbn s | X Z\If () = F@)IXE (16115 | Z:) = M >0,

by assumption. An analogous argument can be repeated for ¢,, thus proving the desired
result. O

The test statistic that we have constructed above differs from the one employed by the
regular GCM. First of all the limiting distribution depends on the underlying distribution
through the eigenvalues of the covariance of £ ®y €, which could vary greatly depending on
the underlying distributions. Further, the limiting distribution has no known closed form
expressions associated with it — we have no density, distribution or quantile functions to
employ.

We can estimate the sequence of eigenvalues consistently by Theorem and since the
sequence of eigenvalues tends to O sufficiently fast to ensure that the sequence is in ¢!,
we could approximate the infinite sum of weighted chi squares with a truncated sum and

calculate quantiles through bootstrapping. Let us formalize the resulting test:

Definition 5.1.3 (GHSCM). Continuing from Theorem we denote by (Xn)neN the
sequence of estimates of A, the eigenvalues of Cov({ Oy €). The sequence Xn is finite for
every n, so let k, denote the number of non-zero estimates and let S\n(z) denote the i’th
element of the sequence n’th sequence.

Let now « € (0,1) and (b, )nen a sequence of natural numbers diverging and denote by g A(l)

and (’j(;)

the distribution of V,, = ¥, X,,(i)W2 using b,, samples.

the empirical a/2 and 1—«/2 quantiles respectively, obtained through bootstrapping
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Then the Generalised Hilbert Space Covariance Measure is the test (¢, )nen given by

0 ifT,e [q@f(")]
Un((z,y,2)") = An

1 otherwise.

The test above is constructed in a manner similar to the univariate GCM, that was con-
structed based on an asymptotic test statistic. However T;, is strictly speaking not a test
statistic, since its distribution depends on the underlying probability measure. While we did
find an expression for the asymptotic distribution of T;,, this is not sufficient to prove asymp-

totic pointwise level. To do so, we will need a few preliminary observations and lemmas.

Lemma 5.1.4. Let (W,,),en be an i.i.d sequence of standard Gaussian random variables,
let (An)nen be a random sequence of absolutely summable, positive sequences independent
of (Wp)nen- Let further X\ be a static absolutely summable, positive sequence. Then if

S i) = A6 =5 0,
i=1

we have

i=1 i=1

Proof.
Note that if we can show

8]

2 Z Al
by Slutsky’s theorem, we will be done To that end let € > 0 be given and note that by the
triangle inequality and Markov’s inequality, we have

( Z An Z ) - EEE PG = A0)])

since E(W?) = 1 and (W,,)nen is independent of (A, )nen. If we can show that the integral

3

converges to 0, we will be done. Note that the Dominated Converge Theorem yields the
desired result if the sequence is dominated. By the triangle and reverse triangle inequalities,
note that

Z @] = M@ < X5 Pald) = AG)],

i=1 i=1

3 Pl = D} A6)

which goes to zero almost surely by assumption, so >7° | [\, (i)| = Y2, |A\(4)| and thus we

can choose N parrying € = 1, to get
2 @I < DG +1,
i=1 i=1
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for all n > N. Set
€L
C = max {2 mw} ,
and note that by the triangle inequality

o0

3 ) = ADI < X ]+ X NI <2 D N0+ O+ 1,

i=1 =1

thus proving the statement. O

Lemma 5.1.5. Let f, : R — R be a sequence of non-decreasing functions converging
uniformly to a strictly increasing limit function f : R — R. Then the sequence of generalised
inverses f,, converges pointwise to f~.

Proof.
Consider a fixed yo € R and let € > 0 be given. We need to show that there exists N € N so
that for all n > N, we have

|fr (wo) — f~ (yo)| < e

Let o = f~(yo) and note that since f is strictly increasing, we can find § > 0, so that

flro—e)+d< yo < f(zo+e)—0.
——
=f(zo)
Now choose N € N from the uniform convergence of f, to f, such that sup_ g |fn(z)— f(z)| <

0. For n > N we now have f,(zo—¢) < f(zo—e)+9 < yo and f,(zo+¢) > f(zo+e)—3 > yo.
So by applying f, to either side we get

xo—e < fr(y0) <xo +¢,
and therefore

|fr (o) — f~ (o)l = | £, (Y0) — w0l <,
as desired. ]

The lemma above in particular applies to distribution functions in the sense that if a sequence
of distribution functions converges uniformly to the distribution function of a continuous
distribution (which is thus strictly increasing), we have that the quantile functions converge
pointwise.

We are now ready to prove that the GHSCM has asymptotic pointwise level.

Theorem 5.1.6 (Pointwise asymptotic level of GHSCM). Continuing from Definition [5.1.3]
under the assumptions of Theorem the GHSCM has pointwise asymptotic level.
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Proof.
If we can show, that for any v € Py, we have

lim P,(¢, =1) =«

n—oc
we will be done (we will omit the v from here on).

Note that

Pl == (g [10.82]) - 1= (52) 7 (8)

n

where Fr, denotes the CDF of T,, and (ig\li and 6;2) denote the estimates of the a/2 and
1 — a/2 quantiles of Y,.” | \;W? using the bootstrap and the estimate . Letting Fy denote
the CDF of sz;l \;W? and gy denote a true quantile, we will be done, if we can show that
Fr, (q3) — Fx(qx) for any quantile.

By the triangle inequality, we can write
|Fr, (@3) — Fx(an)] < [Fr, (@5) — F(@3)] + [FA(@5) — Falgz)] + [Falaz) — Fa(an)]-

The first term goes to zero by Theorem [5.1.2] For the second term, note that Glivenko-
Cantelli (see the appendix, Theorem yields uniform convergence of the empirical
distribution functions to the true distribution functions and Lemma [5.1.5] yields that the
corresponding quantile functions converge, since F is continuous for any A that is not the
zero sequence. The term then goes to zero by continuity of F. For the third term, Lemma
yields convergence of quantiles, since we know that ) converges to A in ¢!, since this is
equivalent to convergence of the estimated covariance operator in trace norm, which follows
from Corollary [£:3.2] The term then goes to zero by continuity of F}. O

The above theorem proves that we have in fact constructed an asymptotically valid test.

Unlike the univariate GCM, we do not have the necessary tools to prove a uniform asymptotic
version of the GHSCM. To the best of the author’s knowledge, no uniform limit theorems exist
on Hilbert spaces. While some results exist about the uniform validity of the bootstrap (see
[21] for instance), it is also unclear whether the eigenvalues of Cov(§ Oy €) can be estimated
uniformly. Thus it is doubtful whether we can state satisfying conditions to ensure uniform
asymptotic level of the GHSCM.

Using the Hilbertian linear model, we can construct a complete example of a conditional

independence test.

Theorem 5.1.7 (GHSCM using the Hilbertian linear model). Let X, Y and Z be Hilbertian
random variables in three possibly distinct Hilbert spaces Hx, Hy and Hz respectively.
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Assume that regressing X on Z and Y on Z both satisfy the assumptions in Theorem [4.3.5
and assume further that u,(z) and v,(z) in Theorem are bounded by some o2 > 0.
Then the GHSCM testing X 1 Y | Z has pointwise asymptotic level.

Proof.
We will only need to show that \/nM], and /nMg, go to zero in probability, since the

remaining conditions then follow by the assumptions. This holds by Markov’s inequality and
Theorem [4.3.5] O

The author believes, that this is the first example of a conditional independence test for
Hilbertian data (and thus also for functional data, since these can be viewed as random

elements in a Hilbert space).

5.2 EMPIRICAL INVESTIGATION OF THE GHSCM

In this section we will compare the performance of the GCM with the GHSCM through
a simulation study. We will consider Hilbertian random variables in ¢2, the prototypical
example of an infinite-dimensional Hilbert space and throughout let (e,)nen denote the
standard basis in £? as described in Example We will simulate X, Y and Z as Hilbertian
random variables in various ways as described later. The simulations will not be truly infinite-
dimensional but we will instead simulate truncated versions of the variables. Throughout
the study we only simulate the first 50 components of the infinite-dimensional variables
considered.

The main purpose of this simulation study is to investigate situations where the real-valued
GCM does not apply and where the GHSCM is more appropriate to use. Given n observations
of infinite-dimensional Hilbertian random variables X, Y and Z we can perform a principal
components analysis and retain the & components with the most variation in each of the
variables. Denote these k principal components of the variables X', Y’ and Z’ respectively.
Supposing that we have a regression method that regresses X’ on Z’ and Y’ on Z’ that
satisfies the requirements for the GCM, we have a test with asymptotic level. However it
is not clear whether we are able to detect all cases where conditional independence is not
present. For instance, we could imagine that the dependence happens in the omitted parts
of the variables and we would never be able to detect it. We cannot increase the number
of principal components as n increases in the GCM, since then we no longer have a level
guarantee. The GHSCM combined with the Hilbertian linear model allows us to retain
asymptotic level while hopefully being able to detect more forms of dependence than the
regular GCM.
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In the simulation study we will consider four models. We consider two models, where we can
theoretically justify the use of the GHSCM by Theorem For both of these models we let
€x, €y and €z be independent Hilbertian random variables with mean zero and covariance

operator
e

1
I, = Z %(eHQen).
n=1

Let furthermore .7 be the k-shift operator, i.e. #((a1,a2,as,...)) = (ar, ari1,Gks2,---)

JZ716,0 = (2 (en @671)) yk-

n=1

and

Slo

We consider the models:

1.
Z = Ez
X = ”Q{LlZ +ex
Y =ah1Z +¢y.
In this model Hy is true,ie. X L Y | Z.
2.

Z=EZ
XZJZ{LlZ-FEX
Y=JZ{171Z+JZf575X+€y.

In this model Hy is false, i.e. X XY | Z.

For these models Theorem yields that we have asymptotic level if we choose k,, sensibly.

Theorem 5.2.1 (GHSCM in model 1 and 2 has pointwise asymptotic level). Using k,, =
[n%/°] in the estimation procedure of the Hilbertian linear model, the GHSCM in model 1
and 2 satisfy the conditions of Theorem and thus we can test conditional independence

with pointwise level.

Proof.
It is sufficient to show that the conditions are satisfied in model 2, since the regression X on
Z in model is identical to both regressions in model 1.

Consider first regressing X on Z. It is clear that @, . is Hilbert-Schmidt since it is the
composition of a Hilbert-Schmidt operator and a bounded operator. We also know that all
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of the technical assumptions for the regression are fulfilled since Z is Gaussian and the noise
is mean zero Gaussian. We only need to ensure that we choose k, in a way satisfying that
both (k,logk,)?/n — 0 and that there exists some N so that vy, < (knlogk,)?/n for all
n > N as in Theorem {.3.5]

Recall that v, = sup;-.{jlogjll#4,1(e;)l\/A;} where (Aj,e;) is the j'th eigenvalue and -
vector pair of the covariance of Z. By construction we have, \/Z = +/2=7 and that the
eigenvectors are the basis vectors (e, )nen. We also get |27 1(e;)|| = ]%1 for j > 1 and 0 if
j =1. Thus 3 = 7, and for all k¥ > 1 and we have

_ klogk
LTINS
Since
4 log(n)® _ [n*° log([n*°])? _ (kn logkn)®
25 nl/s n B n
and

e = AN log(In??]) (n? +1) log(n®/° +1)
T (5] = DV2IRPT T (25 — 1)Nan
we will be done, if we can find IV such that for all n > N, we have

(n?5 4+ 1) log(n?5 + 1) - 4 log(n)?
(n2/5 _ 1) /2n2/5 = 25 n1/5

Such an N exists if
(n?5 4+ 1)log(n*° +1) 25 nl'/®

— 0
(n2/5 —1)\/2n*" 4 log(n)? -
as n — 00. Equivalently we can show that
(m+1)log(m+1)25  /m 50

(m—=1)v2m 4 ]og (m5/2)2
as m — oo.

This is true since we can write

(m+1)log(m+1)25  \/m _m+1 ‘m log(m +1)
(m—1)2" 4 og (m5/2)2 m— 1\/; log(m)?2

where the first factor goes to 1, the second to 0 and the third to 0 by an application of
L’Hopital’s rule.

When regressing Y on Z, note that we can write

Y = (eh + s sah1)2 + s 5ex +ey.
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The noise is again Gaussian by Theorem [4.1.12] and therefore satisfies the conditions of the
regression. 7 is still Gaussian and thus also satisfies the conditions of the regression. It

remains to show the condition on 7x,. We can calculate v, as before except now defining
S = g1 + o5 5.9 1 we have

0 if j =1
1 ()|l = = if j € {2,3,4,5,6}

Jj—1
\/(]_11)2 + (j_l)g?j_ﬁ)g otherwise

and thus v; = 2 and for k € {2,3,4,5,6} 7 is identical to when regressing X on Z and for
k>6

_ klogk 1 4 25
T N =12 T -1k —6)2

We can now proceed with similar arguments as before. O

We also consider two further models where we do not have results guaranteeing the validity
of the GHSCM. Let £x and &y be independent mean zero Hilbertian random variables with

covariance operator

5 e 1
I's= Z (en ®€n) + Z on—5 (en @en)~

n=1 n=6

We consider the models:
3.

X =€x
Z=,%’1X+EZ
Y=5271’1Z+§y.

In this model Hy is true,ie. X 1 Y | Z.

X =&y
Y =&

Z = %,5X+%,5Y+EZ

In this model Hy is false, i.e. X XY | Z.
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It is unclear whether the mean square error of the Hilbertian linear model converges for
model 3 and 4 as it does for model 1 and 2.

While this simulation study is done in ¢?, we could just as well visualise it in L?[0, 1] since
these spaces are congruent. In Figure [5.1] we see 3 realizations from each of the four models
plotted in the Fourier basis of L2. In Figure we write each of the models as a graphical
model to express the causal relations between the variables (for more on the use of graphical
models to express conditional independence, see [19].)

In the simulation study we compare the GCM and the GHSCM. For the GCM we perform
principal components analysis and retain the 5 components with most variation and employ
linear least-squares regression as the regressor. To compute the GCM for multivariate data we
construct the univariate GCM for each combination of components of the residual (yielding
25 components) and consider the sum of squares. The sum of squares is then evaluated in the
x2-distribution with 25 degrees of freedom to determine whether the hypothesis is rejected.
For the GHSCM we apply the Hilbertian linear model directly with k,, as in Theorem [5.2.1
For each of the 4 models we sample 50, 100, 200, 300, 400 and 500 samples and repeat the
experiment 100 times. The results can be seen in Figure[5.3

For model 1 and 3 where the null is true, we see that both the GCM and the GHSCM appear
to hold level. For model 2 and 4 where the null is false, we see that the GCM fails to reject
the null, while the GHSCM is able to detect the conditional dependence when n is large
enough. While model 2 and 4 were deliberately constructed so that the GCM would fail, we
see that the GHSCM allows for detecting more complex dependencies when working with

truly infinite-dimensional data.
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Figure 5.1: Three samples from each of the models (each color marks a sample) viewed as
elements of L?[0,1] using the Fourier basis Bs described in Example Note that the
scale differs for each of the models.

P R

Figure 5.2: Graphs representing each of the four considered models. From left to right they
are model 1 through 4.
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Figure 5.3: Simulation results: While both the GCM and GHSCM hold level in model 1 and
3 only the GHSCM has the ability to detect the conditional dependence in model 2 and 4.
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Summary and outlook

In this thesis we constructed a conditional independence test with pointwise asymptotic
level for random variables with values in separable Hilbert spaces. We saw that it had
applications in the realm of functional data analysis and constructed explicit examples of
conditional independence tests for functional data in Theorem [2.3.5] and Theorem [5.1.7
Through a simulation study we also saw that while PCA allows us to use the regular GCM
on functional data, we will be able to detect many more types of conditional dependence
using the GHSCM.

It would be interesting to extend these results further to Banach space valued random va-
riables. Banach spaces can be significantly more complicated than Hilbert spaces and while
non-separable Hilbert spaces are very rare in practice, non-separable Banach spaces occur
more often, so generalizations allowing for non-separable spaces would also be interesting.
Many of the Hilbert space results in this thesis are motivated by the functional data paradigm
that view observed data as functions, typically as elements in the separable Hilbert space
L2[0,1]. Results for separable Banach spaces would allow for the functions to be viewed
as elements of C[0,1] (the space of continuous real-valued functions on [0,1]) and for non-
separable Banach spaces would allow for the functions to be viewed as elements of L*[0, 1]

(the space of (equivalence classes of) essentially bounded real-valued functions on [0, 1]).

It would also be relevant to see the results of the thesis applied to real data, for instance in
causal inference for functional data. There are numerous practical considerations that have
not been dealt with in this thesis, such as whether the results still hold when the functional
observations are obtained through smoothing of discrete observations. There are also possible
computational problems when computing the GHSCM test statistic and bootstrapping the
limiting distribution. The aforementioned problems and applications might be more easily
solved if one took a different approach to functional data analysis than the one given in this
thesis. It is possible to view functional data as stochastic processes rather than Hilbertian
random variables and it would be interesting to see the theory of this thesis expressed in
that framework.




Appendix

A.1 MEASURE-THEORETIC PROBABILITY THEORY

In the following, we review some of the fundamental theorems and definitions from measure
theory and probability theory, that we will use throughout the thesis. Proofs of the various
theorems are omitted for brevity. For a full treatment of the subjects mentioned in this
section, we refer to [9], [23] and [27].

A fundamental object in measure theory is the o-algebra on a set, since this allows us to

define a measurable space and then a measure on the space.
Definition A.1.1 (c-algebras, generators and measurable spaces). Let X be a set and let
E be a set of subsets of X. We say that E is a o-algebra if E satisfies

1. X eE,

2. if Ae E, then A° € E,

3. if (A,)nen is a sequence in E, then U:f:l A, €E.

If E is a o-algebra, the pair (X,E) is a measurable space.

If D is some set of subsets of X, we define o(ID) to be the smallest o-algebra on X’ containing
D and say that D generates the o-algebra o(D).

For sets with added structure like topological or metric spaces, we would like to use a o-
algebra that respects the structure. This leads to the definition of the Borel g-algebra on a

space.

Definition A.1.2 (Borel o-algebra). Let X be a topological space and let O be the set of
all open subsets of X. We define the Borel o-algebra on X as

B(X) = o(0).




A.1 MEASURE-THEORETIC PROBABILITY THEORY

If X =R, we simply write B for the Borel o-algebra on R.

For concrete spaces we will work exclusively with the Borel o-algebra. To resolve whether a

given class of sets is a generator of a o-algebra, we often resort to applying Dynkin’s lemma.

Theorem A.1.3 (Dynkin’s lemma). Let (X,E) be a measurable space. If D € E satisfies

1. X eD,
2. A,B e D with A € B implies B\B € D,

3. (An)neny € D with A,, € A, for all n implies UpenA, € D,
we say that D is a Dynkin class. If H € D is stable under intersections, we have o(H) < D.

Once we have a measurable space, we can define a measure on the space.

Definition A.1.4 (Measure and measure space). Let (X,E) be a measurable space. A

function p : E — [0,0) is a measure, if

2. For any sequence of pairwise disjoint sets (A )nen in E, p (U, 1 4n) = 2,2, w(Ay).

The triple (X, E, u) is a measure space.
If w(X) =1, (X,E, ) is a probability space and p is a probabiliy measure.

On (R?,BY) we define the d-dimensional Lebesgue measure mg as the unique measure assig-

ning sets of the form [a1,b1] x -+ x [an, b,] measure | [, (b; — a;).

A crucial part of measure theory is the interplay between mappings and measures. Since
measures are defined on o-algebras these will be the crucial language to understand which
mappings are well-behaved and which are not.

Definition A.1.5 (Measurable mappings). Let (X,E and (),D) be two measurable spaces
and let f: X — Y. We say that f is E-D-measurable if f~1(D) € E for all D € D.

We sometimes simply say that f is measurable when the o-algebras are obvious.

It is straightforward to show that it is sufficient to check measurability on a generator of
D. From this we can see that continuous mappings must be measurable when considering

mappings between spaces equipped with Borel o-algebras.
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Having defined measurable mappings, we can define the Lebesgue integral for real-valued
functions. Constructing this integral relies on approximating measurable mappings by functi-
ons where the integral is straightforward.

Definition A.1.6 (Simple functions and their integral). Let (X,E, u) be a measure space
and let f: X - R. If f can be written

f(@) = Y aila, (@),
=1

for ay,...a, € R and Ay,... A, € B are disjoint, we say that f is simple. We furthermore
define the Lebesgue integral of the simple function f with respect to p by

ffdﬂ = Z aip(A;).
=1

Theorem A.1.7 (Approximating Borel-measurable functions by simple functions). Let
(X,E, 1) be a measure space and let f : X — R be Borel-measurable. Then there exists a
sequence of simple functions f,, converging pointwise to f.

Using the above theorem, we can now define the Lebesgue integral.

Definition A.1.8 (Lebesgue integral). Let (X, E, 1) be a measure space and let f: X - R
be Borel-measurable and non-negative. We define the Lebesgue integral of f with respect to
p by

deu = sup{J,gdp | f<g, gis simple}.

For general f, we let f1(x) = max(0, f(z)) and f~(z) = max(0, —f(z)) denote the positive
and negative parts of f respectively and if both these have finite integrals, we define

Jran=]ran= [ an

These are the fundamental definitions of Lebesgue integration but to state some of the deeper
and often applied theorems, we will turn to random variables since they will be the main
way that we will see this theory in the thesis and it is thus convenient to express the results
in this language.

Definition A.1.9 (Random variables). A random variable X : Q — X is a measurable map-
ping from the probability space (2, F, P) to the measurable space (X,E). The distribution
of the random variable is the measure X (P) on (X,E) and we write X ~ v to denote that
X has distribution v.
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The vocabulary when working with random variables is sometimes different from when wor-
king with general functions but we will use it extensively. In the following we concentrate

on real-valued random variables.

Definition A.1.10 (Fundamental operations on real-valued random variables). Let X be
a real-valued random variable. The distribution function of the random variable X is the
function F : R — [0, 1] given by

The quantile function of the random variable X is the generalized inverse of the distribution
functions, i.e. it is the function @ : [0,1] — R given by

Q(p) = inf {p < F(z)}.

z€R

The ezpectation E(X) of the random variable X is the integral of X with respect to P, i.e.
E(X) = JX dP,

if F|X]| is finite, otherwise it is undefined.
If E|X|P is finite for some p > 0, we say that X has p-th moment.

If X has second moment, we define the variance of X as
Var(X) = E(X — E(X))?),
and if Y is another real-valued random variable with second moment, we define

Cov(X,Y) = E[(X — E(X))(Y — E(Y))].

These notions can be generalized to multivariate random variables, that take values in R¢.

One of the simplest and yet most often used inequalities, is Markov’s inequality:

Theorem A.1.11 (Markov’s inequality). Let X be a real-valued random variable. Then for
any € > 0 and p > 0, we have
E|X|P
P(|X|=ze) < g
b
It is helpful to introduce the notion of independence, to distinguish random variables that
affect each other from those that have no effect on each other. Variables that do not affect

each other are independent. Independence is defined through o-algebras as below.

Definition A.1.12 (Independence of c-algebras). Let (2,F, P) be a probability space and
let ;1 and Fo be sub-o-algebras of F. If
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P(F1 ﬁFQ) ZP(Fl)P(FQ), VFleFl,FQGIFQ,
we say that Fy is independent of Fo and write F; I Fs.

Definition A.1.13 (Independence of random variables). Let X and Y be random variables
defined on the same probability space (2, F, P) with values in the measurable spaces (X, E)
and (Y, G) respectively. We say that the random variables X and Y are independent if the
o-algebras o(X) and o(Y') are independent and we write X 1 Y.

We're often interested in sequences of real-valued random variables and how they behave in

the limit and to that end, we have a variety of convergence types.

Definition A.1.14 (Convergence of real-valued random variables). Let (X,,),en be a se-
quence of real-valued random variables and X another real-valued random variable.

1. If the set
{we Q| lini Xn(w) = X(w)}
n—0

has probability 1, we say that X,, converges almost surely to X and write X, “3° X.
2. If for every € > 0 we have
nh—IEcP(|X"_X| >¢e)=0,
then we say that X,, converges in probability to X and write X,, £ x.

3. If for every bounded, continuous function f: R — R, we have
E(f(Xn)) = E(f(X)) asn— o,

we say that X,, converges in distribution to X and write X, ZX.

Some of these notions of convergence imply each other.

Theorem A.1.15 (Relations between modes of convergence). Let (X, )nen be a sequence

of real-valued random variables and X another real-valued random variable.
X, X=—=X,5X

X, Ex—=x,3%x
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Even though a sequence of integrable random variables converges, it is not obvious if the se-
quence of expectations converges. The following theorem gives easily checkable and sufficient

conditions to ensure convergence of expectations.

Theorem A.1.16 (Dominated Convergence Theorem). Let (X,,),en be a sequence of real-
valued random variables and X and Z be two other real-valued random variables. Assume
that X, 3 X, that |X,,| < Z for all n € N and that Z has first moment. Then X has first
moment and

E(X,) > E(X) asn — oo.

Convergence in distribution is a very weak form of convergence but we will often use that it
is well-behaved when combined with a sequence converging in probability to a constant.

Theorem A.1.17 (Slutsky’s theorem). Let (X,,)nen and (Y, )nen be sequences of real-valued
random variables and let X be another real-valued random variable such that X, B X and
Y. £ ¢ for some ¢ € R. Then

1.
X, +Y, B X+ec
2.
XY, > cX
3. x
2 B2 ife#£0
n C

Sequences that are independent and identically distributed (i.i.d) are particularly well-behaved
as the following deep and often-applied results show.

Theorem A.1.18 (Law of Large Numbers (LLN)). Let (X,,)nen be a sequence of indepen-
dent, identically distributed, real-valued random variables. If E|X;| < oo then

Z X; 5 B(Xy)

1
iz

Theorem A.1.19 (Central Limit Theorem (CLT)). Let (X, )nen be a sequence of indepen-
2

dent, identically distributed, real-valued random variables. If E|X;|* < co then

N (; Zn: X; — E(X1)> 5 N(0, Var(X1))

i=1

where N (u1,02) denotes the normal distribution with mean p € R and variance o where
o> 0.
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Much work has been dedicated to generalizing the CLT to settings where the distributions of
the variables in question are not necessarily the same. This lead to the central limit theorems

for triangular arrays.

Theorem A.1.20 (Lyapounov’s central limit theorem). Let (X,x)1<k<n be a triangular
array of real-valued random variables. Set S,, = EZ:1 X,k Assume that

1. For all n > 1, the family (X,.x)xr<n is independent.
2. E(X,;)=0forall 1 <k<n.
3. Var(S,) — 1 as n — .

4. There exists 7 > 0 so that
lim > E|X,;[*™" = 0.
i=1

n—o 4

Then S, 3 N(0,1).

Sometimes we would not only like to approximate a single expectation but a whole distribu-
tion simultaneously. For real-valued random variables this can be done using the empirical
distribution function, which the following theorem shows, approximates the true distribution

function in the i.i.d setting.

Theorem A.1.21 (Glivenko-Cantelli theorem). Let (X, )nen be a sequence of indepen-
dent, identically distributed, real-valued random variables with common distribution function

F(z). Define the empirical distribution function

Fo(z) %

n
D Lixizn) ().
=1

Then

sup |Fy,(z) — F(z)| =3 0.

zeR

This is the theoretical basis for the validity of bootstrapping.

We will also apply the theory of conditional expectations. The expectation represents our
"best guess" about the value of random variable when no information is given. The conditio-
nal expectation given a c-algebra represents our best guess, given the information contained
in the o-algebra.
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Definition A.1.22 (Conditional expectation). Let X be a random variable defined on the
probability space (Q,F, P) with values in (R,B). Assume further that X is integrable, i.e.
E|X| < oo and let D be a sub-c-algebra of F. Then the conditional expectation of X given
D is denoted by E(X | D) and is the almost surely unique random variable satisfying

1. E(X | D) is D-measurable,

2. for every D e D
J E(X|D)dP=J’ X dP.
D D

If Y is another random variable on the same probability space with values in some measurable
space, we define F(X |Y) to mean E(X | o(Y)).

If we write E(X |Y, Z) for a third random variable Z, we mean E(X | o(Y, Z)) and similarly
if H is another sub-o-algebra of F we write E(X | D,H) to mean E(X | o(D, H)).

It is worthwhile to note that if X is real-valued and measurable wrt. to the o-algebra
generated by a random variable Y on an arbitrary measure space, this implies that X can
be written as the composition of Y with a measurable function. This is the content of the

Doob-Dynkin lemma.

Theorem A.1.23 (Doob-Dynkin lemma). Let X be a real-valued random variable defined
on (,F, P) and let Y be another random variable on the same probability space with values
in the measure space (), E). Then X is o(Y)-measurable if and only if there exists a E — B-

measurable function ¢ : ) — R so that

X =¢oY.

This lets us define what is meant by a conditional expectation given that Y = y.

Definition A.1.24 (Conditional expectation givne value of variable). Let X be a real-
valued random variable defined on (2,F, P) and let Y be another random variable on the
same probability space with values in the measure space (), E). Assume that X has finite
first moment, so that E(X |Y) exists. By the Doob-Dynkin lemma there exists a measurable
¢ :Y — Rsuch that E(X |Y) =¢oY. We define E(X |Y =y) := ¢(y) and call this the

conditional expectation of X given Y =y.

Conditional expectations have several nice properties.

Theorem A.1.25 (Properties of conditional expectation). Let X be a random variable
defined on the probability space (Q,F, P) with values in (R,B). Assume further that X is
integrable, i.e. F|X| < oo and let D be a sub-o-algebra of F. Then

— 103 —



A.2 ESTABLISHED RESULTS AND DEFINITIONS FROM ANALYSIS AND LINEAR ALGEBRA

1. If H € D is a third o-algebra, we have
E(X | H) = E(E(X | H) | D) = E(E(X | D) | H),
2. If 0(X) and D are independent then
B(X | D) = E(X),
3. If X is D-measurable then
EX |D)=X,

4. If Y is another real-valued integrable random variable, XY is integrable and X is
D-measurable, we have
E(XY |D)=XE(Y | D).

We also have a version of dominated convergence for conditional expectations.

Theorem A.1.26 (Conditional dominated convergence theorem). Let (X, ).en be a se-
quence of real-valued random variables defined on the probability space (2,F, P) and let
X be another such random variable. Assume further that for all n, X, is integrable, X is

integrable and let D be a sub-o-algebra of F. Assume that X, X and |X,| <Y for all n for
some integrable real-valued random variable Y. Then

E(X, | D)%% E(X | D).

A.2 ESTABLISHED RESULTS AND DEFINITIONS FROM ANALYSIS AND
LINEAR ALGEBRA

In the following we review some of the fundamental theorems and definitions from analysis
and linear algebra, that are used throughout the thesis. Proofs are omitted for brevity. For
a full treatment, see [23], [12] and [10].

The fundamental object of study in linear algebra is the vector space.

Definition A.2.1 (Vector space). Let F be a field and let V be aset. Let +: V xV >V
and - : F x V — V be mappings. We say that V is a vector space over F if

1. Ve,y,zeV:i(z+y)+z=a+(y+2)
2. 0eVVzeV:iz+0=04+2ax=2x

3. VeeVIyeViz+y=y+z=0
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4. Ve,yeV:iz+y=y+x

5. VeeVVa,beF:a-(b-V)=(ab)-V

6. Ve,ye VVaeF :a-(z+y)=a-xz+a-y
7. YreVVa,beF:(a+b)-x=a-z+b-x

8. VreV:l-z=x
The canonical examples of vector spaces are R? over R with the usual addition and multipli-
cation. In this thesis we will solely consider vector spaces over R. Some vector spaces have

added structure such as the notion of a length (a norm) or a notion of orthogonality (an
inner product).

Definition A.2.2 (Normed space). Let V' be a vector space over F' and let ||-]] : V — F be
a mapping. We say that V is a normed space and that ||-|| is a norm on V if

1. |z =0 <= =0
2. Ve eV VaeF:|ax| = al|x|
3. Ve,y eV lz+yll < flzfl + lyll

Definition A.2.3 (Inner product space). Let V be a vector space over F' and let {-,-) :
V x V — F be a mapping. We say that V is an inner product space and that {-,-) is an
inner product on V if

1.VreV :{z,z)=0

2. Ve,ye VVaeF :{a z,y)=alz,y)
3. Vz,y,ze Ve +y,2z)=L{x,2)+{y,2)
4. Ve,yeV :{x,y) = {y,x)

where @ denotes the conjugate of a.

Every inner product space is also a normed space, since setting ||z| = 1/{z,z) becomes a

norm. In inner product spaces we have the crucial Cauchy-Schwarz inequality.

Theorem A.2.4 (Cauchy-Schwarz inequality). Let V be an inner product space over F'

with inner product {:,-) and corresponding norm |-||. Then for all z,y € V, we have

(o yp” < =P llyll*.
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While we almost solely consider vector spaces in this thesis, there are some more general
concepts that are relevant to consider, in particular those related to limits and distances on
arbitrary spaces.

Definition A.2.5 (Topology and topological spaces). Let X be some set. We say that a

collection of subsets 7 is a topology if

1. Jertand X e
2. The union (countable or uncountable) of arbitrary elements of 7 is again in 7

3. Finite intersections of elements in 7 are again in 7

(X, 7) is called a topological space and the elements of 7 are the open sets of X. If A is a
subset of X, then A is said to be closed if A€ € 7. For an arbitrary subset of X, A, we define
the closure of A as the smallest closed set containing A and denote it A.

A topology is the fundamental tool for investigating convergence and continuity. When we’re
working with uncountably infinite spaces, we would like to reduce our problems to countable
problems. Broadly speaking this is possible in separable spaces.

Definition A.2.6 (Dense sets and separability). Let (X, 7) be a topological space. A set
A C X is said to be dense if A = X. (X,7) is said to be separable if it contains a countable,

dense subset.

While topologies are fundamental, we will often work with them indirectly by working with
a metric, that induces a topology.

Definition A.2.7 (Metric space). Let X be a set and let d: X x X — [0, 0) be a mapping.

We say that M is a metric space and d is a metric if

1. d(z,y) =0 <= z =y
2. Yo,y e X 1 d(z,y) = d(y, )

3. Vo,y,z€ X : d(x,2) <d(z,y) +d(y, 2)

A subset A of X is open in the metric space, if for every a € A, there exists € > 0 so that the

g-ball around a is enclosed in A, i.e.

B(a,e) ={z e M | d(a,z) <e} € A.
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The collection of all open sets using the metric forms a topology. One should also note that
any normed vector space is also a metric space by setting d(z,y) = || — y||. Metric spaces
give us a notion of distance on a space. We would like for the spaces we consider to have no
holes, which leads to the following definition.

Definition A.2.8 (Sequences and completeness). Let X’ be a space with metric d and let
(zn)nen be a sequence in X. We say that x,, converges to x if

lim d(z,,z) =0.

n—C
We say that x,, is a Cauchy sequence if

lim d(zn,zm) = 0.
n,m—%0

We say that X' is complete if every Cauchy sequence converges to some z € X.

A.3 AUXILIARY RESULTS

In this section we prove results from the main thesis, that were deemed to be too long in
relation to their importance.

Theorem A.3.1 (Equivalent definition of conditional independence). Let (Q2,F, P) be a
probability space and let Fy, Fy and F5 be sub-c-algebras of F. Fy 1 Fy | F5 if and only if

P(1p, | F2,F3) = P(1F, | F3), (*)

for all F1 € Fl.

Proof.
We follow the same strategy as the proof given in [5] Proposition 2.3.28.

Assuming that () holds, we get conditional independence straight away by properties of
conditional expectation, since for any F} € F; and F; € Fy, we have

E(lFlle | IF3) = E(E(1F11F2 | F27F3) | FB) = E(E(]‘Fl | F27F3)1F2 | F3)

= E(E(1p, | F3)lp, | F3) = E(1p, | F3)E(1p, | Fs).

Assuming instead conditional independence, we will prove (*) using a Dynkin class argument.
Letting F; € F; be given, note first that the set

HZ{FQﬁF3|F2€]F2,F3EF3}
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generates o(Fz,F3). This holds since it is straightforward to see that any set in Fy UF3 must
also be in H, so o(FF5,F3) € H. It is also straightforward to see that H < o (Fs,F3). H is also
stable under intersections, so Dynkin’s lemma yields that o(H) = o(F3, F3).

Returning to the problem, we need to show that E(1p, | F2,F3) = E(1p, | F3) and will do

so straight from the definition. Obviously E(1p, | F3) is o(F2,F3)-measurable, so we only
need to show that

JD 1, dP = jD B(lg, | Fs)dP (1)

for all D € o(F9,F3). To that end define Dp, to be the collection of all sets in o(Fs,Fs3)
satisfying (). If we can show that H € Dp, and that Dp, is a Dynkin class, we will be done
by Dynkin’s lemma, since then o(F2,F3) = o(H) € Dp, € o(F3,F3). To show that H € D, ,
take some H € H, i.e. H = Fy n F3 for some Fy € Fy and F3 € F3 and note that

J 1l dP = | 1plpdP=| E(lplp |F3)dP= | E(lp | F3)E(lp, | F3)dP
H F3 Fs3 F3

= E[E(lp, | F3)lR, | F5]dP = E(lp, | F3)lp,dP = f E(1p, | F3)dP,
FB F3 H

by various properties of the conditional expectation.

To show that Dp, is a Dynkin class, we note first that by the tower property 2 € Dg,. To
show that Dp, is stable under set, difference, we see that for D1, Ds € Dp, with D1 € Dy, we

have
f lpldP=f1F11D2—1F11D1dP=f 1p dP— | 1p dP
Do\D: D> D,
— | EQp |F3)dP— | E(is | F3)dP
D2 Dl
= J(lp2 —1p,)E(lp, | F3)dP = E(1p, | F5)dP,
D2\D1

by using that 1p,\p, = 1p, — 1p, and the fact that both D; and D; are in Dp,. Finally
taking an increasing sequence (D, )nen in Dp,, we have

J 1F1dP:f1UneNDn1F1dP:J lim ]-Dn]-FldP: lim ]-FldP
UnenDn

n—xC n—xC D
n

= lim | E(lp, |F3)dP = E(1p, | F5)dP,
n—oL Dn UneNDn

by dominated convergence. O

Theorem A.3.2 (Alternative characterization of conditional independence). Let (Q,F, P)
be a probability space and let Fy, Fy and F3 be sub-c-algebras of F. F; L Fy | F3 if and only
if

(Fy,F3) L (F2,F3) | Fs.
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Proof.
We will show this using the properties of conditional independence derived in Theorem [2.1.9

It is straightforward by applying decomposition and symmetry that (Fi,Fs) L (F2,F3) |F3 =
Fy LFy | Fs.
To show the converse, note first that we have F; L F3 | (F2,F3) trivially since for Fy € [y

and F3 ey

Thus since both F; 1L Fy | F3 and F; 1L Fs | (F2,Fs), we can apply contraction to get
Fy L (F3,F3) | F3. Using symmetry and noting that (Fy,F3) L F3 | (F1,F3) by similar
arguments as earlier, we can again use contraction to get the desired result. O
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